Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-epelg Structured version   Visualization version   GIF version

Theorem bj-epelg 35937
Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5582 and closed form of epeli 5581. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) TODO: move it to the main section after reordering to have brrelex1i 5730 available. (Proof shortened by BJ, 14-Jul-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-epelg (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem bj-epelg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rele 5825 . . . 4 Rel E
21brrelex1i 5730 . . 3 (𝐴 E 𝐵𝐴 ∈ V)
32a1i 11 . 2 (𝐵𝑉 → (𝐴 E 𝐵𝐴 ∈ V))
4 elex 3492 . . 3 (𝐴𝐵𝐴 ∈ V)
54a1i 11 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
6 eleq12 2823 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
7 df-eprel 5579 . . . 4 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
86, 7brabga 5533 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 E 𝐵𝐴𝐵))
98expcom 414 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵𝐴𝐵)))
103, 5, 9pm5.21ndd 380 1 (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  Vcvv 3474   class class class wbr 5147   E cep 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-eprel 5579  df-xp 5681  df-rel 5682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator