Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-epelg Structured version   Visualization version   GIF version

Theorem bj-epelg 37034
Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5602 and closed form of epeli 5601. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) TODO: move it to the main section after reordering to have brrelex1i 5756 available. (Proof shortened by BJ, 14-Jul-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-epelg (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem bj-epelg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rele 5851 . . . 4 Rel E
21brrelex1i 5756 . . 3 (𝐴 E 𝐵𝐴 ∈ V)
32a1i 11 . 2 (𝐵𝑉 → (𝐴 E 𝐵𝐴 ∈ V))
4 elex 3509 . . 3 (𝐴𝐵𝐴 ∈ V)
54a1i 11 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
6 eleq12 2834 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
7 df-eprel 5599 . . . 4 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
86, 7brabga 5553 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 E 𝐵𝐴𝐵))
98expcom 413 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵𝐴𝐵)))
103, 5, 9pm5.21ndd 379 1 (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  Vcvv 3488   class class class wbr 5166   E cep 5598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-eprel 5599  df-xp 5706  df-rel 5707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator