Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-epelg Structured version   Visualization version   GIF version

Theorem bj-epelg 35949
Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5584 and closed form of epeli 5583. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) TODO: move it to the main section after reordering to have brrelex1i 5733 available. (Proof shortened by BJ, 14-Jul-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-epelg (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem bj-epelg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rele 5828 . . . 4 Rel E
21brrelex1i 5733 . . 3 (𝐴 E 𝐵𝐴 ∈ V)
32a1i 11 . 2 (𝐵𝑉 → (𝐴 E 𝐵𝐴 ∈ V))
4 elex 3493 . . 3 (𝐴𝐵𝐴 ∈ V)
54a1i 11 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
6 eleq12 2824 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
7 df-eprel 5581 . . . 4 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
86, 7brabga 5535 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 E 𝐵𝐴𝐵))
98expcom 415 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵𝐴𝐵)))
103, 5, 9pm5.21ndd 381 1 (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2107  Vcvv 3475   class class class wbr 5149   E cep 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-eprel 5581  df-xp 5683  df-rel 5684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator