Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-epelg Structured version   Visualization version   GIF version

Theorem bj-epelg 37051
Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5592 and closed form of epeli 5591. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) TODO: move it to the main section after reordering to have brrelex1i 5745 available. (Proof shortened by BJ, 14-Jul-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-epelg (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem bj-epelg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rele 5840 . . . 4 Rel E
21brrelex1i 5745 . . 3 (𝐴 E 𝐵𝐴 ∈ V)
32a1i 11 . 2 (𝐵𝑉 → (𝐴 E 𝐵𝐴 ∈ V))
4 elex 3499 . . 3 (𝐴𝐵𝐴 ∈ V)
54a1i 11 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
6 eleq12 2829 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
7 df-eprel 5589 . . . 4 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
86, 7brabga 5544 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 E 𝐵𝐴𝐵))
98expcom 413 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵𝐴𝐵)))
103, 5, 9pm5.21ndd 379 1 (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  Vcvv 3478   class class class wbr 5148   E cep 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-eprel 5589  df-xp 5695  df-rel 5696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator