MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvepnep Structured version   Visualization version   GIF version

Theorem cnvepnep 9296
Description: The membership (epsilon) relation and its converse are disjoint, i.e., E is an asymmetric relation. Variable-free version of en2lp 9294. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
cnvepnep ( E ∩ E ) = ∅

Proof of Theorem cnvepnep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-eprel 5486 . . . . . 6 E = {⟨𝑦, 𝑥⟩ ∣ 𝑦𝑥}
21cnveqi 5772 . . . . 5 E = {⟨𝑦, 𝑥⟩ ∣ 𝑦𝑥}
3 cnvopab 6031 . . . . 5 {⟨𝑦, 𝑥⟩ ∣ 𝑦𝑥} = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑥}
42, 3eqtri 2766 . . . 4 E = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑥}
5 df-eprel 5486 . . . 4 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
64, 5ineq12i 4141 . . 3 ( E ∩ E ) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦})
7 inopab 5728 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝑥𝑥𝑦)}
86, 7eqtri 2766 . 2 ( E ∩ E ) = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝑥𝑥𝑦)}
9 en2lp 9294 . . . 4 ¬ (𝑦𝑥𝑥𝑦)
109gen2 1800 . . 3 𝑥𝑦 ¬ (𝑦𝑥𝑥𝑦)
11 opab0 5460 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑦𝑥𝑥𝑦)} = ∅ ↔ ∀𝑥𝑦 ¬ (𝑦𝑥𝑥𝑦))
1210, 11mpbir 230 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑦𝑥𝑥𝑦)} = ∅
138, 12eqtri 2766 1 ( E ∩ E ) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1537   = wceq 1539  cin 3882  c0 4253  {copab 5132   E cep 5485  ccnv 5579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-fr 5535  df-xp 5586  df-rel 5587  df-cnv 5588
This theorem is referenced by:  epnsym  9297
  Copyright terms: Public domain W3C validator