Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvepnep | Structured version Visualization version GIF version |
Description: The membership (epsilon) relation and its converse are disjoint, i.e., E is an asymmetric relation. Variable-free version of en2lp 9364. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 19-Jun-2022.) |
Ref | Expression |
---|---|
cnvepnep | ⊢ (◡ E ∩ E ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eprel 5495 | . . . . . 6 ⊢ E = {〈𝑦, 𝑥〉 ∣ 𝑦 ∈ 𝑥} | |
2 | 1 | cnveqi 5783 | . . . . 5 ⊢ ◡ E = ◡{〈𝑦, 𝑥〉 ∣ 𝑦 ∈ 𝑥} |
3 | cnvopab 6042 | . . . . 5 ⊢ ◡{〈𝑦, 𝑥〉 ∣ 𝑦 ∈ 𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑦 ∈ 𝑥} | |
4 | 2, 3 | eqtri 2766 | . . . 4 ⊢ ◡ E = {〈𝑥, 𝑦〉 ∣ 𝑦 ∈ 𝑥} |
5 | df-eprel 5495 | . . . 4 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
6 | 4, 5 | ineq12i 4144 | . . 3 ⊢ (◡ E ∩ E ) = ({〈𝑥, 𝑦〉 ∣ 𝑦 ∈ 𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦}) |
7 | inopab 5739 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦 ∈ 𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦}) = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} | |
8 | 6, 7 | eqtri 2766 | . 2 ⊢ (◡ E ∩ E ) = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} |
9 | en2lp 9364 | . . . 4 ⊢ ¬ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦) | |
10 | 9 | gen2 1799 | . . 3 ⊢ ∀𝑥∀𝑦 ¬ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦) |
11 | opab0 5467 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) | |
12 | 10, 11 | mpbir 230 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} = ∅ |
13 | 8, 12 | eqtri 2766 | 1 ⊢ (◡ E ∩ E ) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∀wal 1537 = wceq 1539 ∩ cin 3886 ∅c0 4256 {copab 5136 E cep 5494 ◡ccnv 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-fr 5544 df-xp 5595 df-rel 5596 df-cnv 5597 |
This theorem is referenced by: epnsym 9367 |
Copyright terms: Public domain | W3C validator |