Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvepnep | Structured version Visualization version GIF version |
Description: The membership (epsilon) relation and its converse are disjoint, i.e., E is an asymmetric relation. Variable-free version of en2lp 9441. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 19-Jun-2022.) |
Ref | Expression |
---|---|
cnvepnep | ⊢ (◡ E ∩ E ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eprel 5512 | . . . . . 6 ⊢ E = {〈𝑦, 𝑥〉 ∣ 𝑦 ∈ 𝑥} | |
2 | 1 | cnveqi 5803 | . . . . 5 ⊢ ◡ E = ◡{〈𝑦, 𝑥〉 ∣ 𝑦 ∈ 𝑥} |
3 | cnvopab 6064 | . . . . 5 ⊢ ◡{〈𝑦, 𝑥〉 ∣ 𝑦 ∈ 𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑦 ∈ 𝑥} | |
4 | 2, 3 | eqtri 2764 | . . . 4 ⊢ ◡ E = {〈𝑥, 𝑦〉 ∣ 𝑦 ∈ 𝑥} |
5 | df-eprel 5512 | . . . 4 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
6 | 4, 5 | ineq12i 4154 | . . 3 ⊢ (◡ E ∩ E ) = ({〈𝑥, 𝑦〉 ∣ 𝑦 ∈ 𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦}) |
7 | inopab 5758 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦 ∈ 𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦}) = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} | |
8 | 6, 7 | eqtri 2764 | . 2 ⊢ (◡ E ∩ E ) = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} |
9 | en2lp 9441 | . . . 4 ⊢ ¬ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦) | |
10 | 9 | gen2 1797 | . . 3 ⊢ ∀𝑥∀𝑦 ¬ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦) |
11 | opab0 5486 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) | |
12 | 10, 11 | mpbir 230 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} = ∅ |
13 | 8, 12 | eqtri 2764 | 1 ⊢ (◡ E ∩ E ) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∀wal 1538 = wceq 1540 ∩ cin 3895 ∅c0 4266 {copab 5148 E cep 5511 ◡ccnv 5606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 ax-reg 9427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-eprel 5512 df-fr 5562 df-xp 5613 df-rel 5614 df-cnv 5615 |
This theorem is referenced by: epnsym 9444 |
Copyright terms: Public domain | W3C validator |