![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvepnep | Structured version Visualization version GIF version |
Description: The membership (epsilon) relation and its converse are disjoint, i.e., E is an asymmetric relation. Variable-free version of en2lp 8750. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 19-Jun-2022.) |
Ref | Expression |
---|---|
cnvepnep | ⊢ (◡ E ∩ E ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eprel 5223 | . . . . . 6 ⊢ E = {〈𝑦, 𝑥〉 ∣ 𝑦 ∈ 𝑥} | |
2 | 1 | cnveqi 5498 | . . . . 5 ⊢ ◡ E = ◡{〈𝑦, 𝑥〉 ∣ 𝑦 ∈ 𝑥} |
3 | cnvopab 5749 | . . . . 5 ⊢ ◡{〈𝑦, 𝑥〉 ∣ 𝑦 ∈ 𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑦 ∈ 𝑥} | |
4 | 2, 3 | eqtri 2819 | . . . 4 ⊢ ◡ E = {〈𝑥, 𝑦〉 ∣ 𝑦 ∈ 𝑥} |
5 | df-eprel 5223 | . . . 4 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
6 | 4, 5 | ineq12i 4008 | . . 3 ⊢ (◡ E ∩ E ) = ({〈𝑥, 𝑦〉 ∣ 𝑦 ∈ 𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦}) |
7 | inopab 5454 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦 ∈ 𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦}) = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} | |
8 | 6, 7 | eqtri 2819 | . 2 ⊢ (◡ E ∩ E ) = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} |
9 | en2lp 8750 | . . . 4 ⊢ ¬ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦) | |
10 | 9 | gen2 1892 | . . 3 ⊢ ∀𝑥∀𝑦 ¬ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦) |
11 | opab0 5201 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) | |
12 | 10, 11 | mpbir 223 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} = ∅ |
13 | 8, 12 | eqtri 2819 | 1 ⊢ (◡ E ∩ E ) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 385 ∀wal 1651 = wceq 1653 ∩ cin 3766 ∅c0 4113 {copab 4903 E cep 5222 ◡ccnv 5309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 ax-reg 8737 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-eprel 5223 df-fr 5269 df-xp 5316 df-rel 5317 df-cnv 5318 |
This theorem is referenced by: epnsym 8752 |
Copyright terms: Public domain | W3C validator |