![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvepnep | Structured version Visualization version GIF version |
Description: The membership (epsilon) relation and its converse are disjoint, i.e., E is an asymmetric relation. Variable-free version of en2lp 9600. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 19-Jun-2022.) |
Ref | Expression |
---|---|
cnvepnep | ⊢ (◡ E ∩ E ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eprel 5580 | . . . . . 6 ⊢ E = {⟨𝑦, 𝑥⟩ ∣ 𝑦 ∈ 𝑥} | |
2 | 1 | cnveqi 5874 | . . . . 5 ⊢ ◡ E = ◡{⟨𝑦, 𝑥⟩ ∣ 𝑦 ∈ 𝑥} |
3 | cnvopab 6138 | . . . . 5 ⊢ ◡{⟨𝑦, 𝑥⟩ ∣ 𝑦 ∈ 𝑥} = {⟨𝑥, 𝑦⟩ ∣ 𝑦 ∈ 𝑥} | |
4 | 2, 3 | eqtri 2760 | . . . 4 ⊢ ◡ E = {⟨𝑥, 𝑦⟩ ∣ 𝑦 ∈ 𝑥} |
5 | df-eprel 5580 | . . . 4 ⊢ E = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦} | |
6 | 4, 5 | ineq12i 4210 | . . 3 ⊢ (◡ E ∩ E ) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦 ∈ 𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦}) |
7 | inopab 5829 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝑦 ∈ 𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} | |
8 | 6, 7 | eqtri 2760 | . 2 ⊢ (◡ E ∩ E ) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} |
9 | en2lp 9600 | . . . 4 ⊢ ¬ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦) | |
10 | 9 | gen2 1798 | . . 3 ⊢ ∀𝑥∀𝑦 ¬ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦) |
11 | opab0 5554 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) | |
12 | 10, 11 | mpbir 230 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)} = ∅ |
13 | 8, 12 | eqtri 2760 | 1 ⊢ (◡ E ∩ E ) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∀wal 1539 = wceq 1541 ∩ cin 3947 ∅c0 4322 {copab 5210 E cep 5579 ◡ccnv 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-reg 9586 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-eprel 5580 df-fr 5631 df-xp 5682 df-rel 5683 df-cnv 5684 |
This theorem is referenced by: epnsym 9603 |
Copyright terms: Public domain | W3C validator |