MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvepnep Structured version   Visualization version   GIF version

Theorem cnvepnep 9561
Description: The membership (epsilon) relation and its converse are disjoint, i.e., E is an asymmetric relation. Variable-free version of en2lp 9559. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
cnvepnep ( E ∩ E ) = ∅

Proof of Theorem cnvepnep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-eprel 5538 . . . . . 6 E = {⟨𝑦, 𝑥⟩ ∣ 𝑦𝑥}
21cnveqi 5838 . . . . 5 E = {⟨𝑦, 𝑥⟩ ∣ 𝑦𝑥}
3 cnvopab 6110 . . . . 5 {⟨𝑦, 𝑥⟩ ∣ 𝑦𝑥} = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑥}
42, 3eqtri 2752 . . . 4 E = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑥}
5 df-eprel 5538 . . . 4 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
64, 5ineq12i 4181 . . 3 ( E ∩ E ) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦})
7 inopab 5792 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝑥𝑥𝑦)}
86, 7eqtri 2752 . 2 ( E ∩ E ) = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝑥𝑥𝑦)}
9 en2lp 9559 . . . 4 ¬ (𝑦𝑥𝑥𝑦)
109gen2 1796 . . 3 𝑥𝑦 ¬ (𝑦𝑥𝑥𝑦)
11 opab0 5514 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑦𝑥𝑥𝑦)} = ∅ ↔ ∀𝑥𝑦 ¬ (𝑦𝑥𝑥𝑦))
1210, 11mpbir 231 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑦𝑥𝑥𝑦)} = ∅
138, 12eqtri 2752 1 ( E ∩ E ) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1538   = wceq 1540  cin 3913  c0 4296  {copab 5169   E cep 5537  ccnv 5637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-reg 9545
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-eprel 5538  df-fr 5591  df-xp 5644  df-rel 5645  df-cnv 5646
This theorem is referenced by:  epnsym  9562
  Copyright terms: Public domain W3C validator