![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epinid0 | Structured version Visualization version GIF version |
Description: The membership relation and the identity relation are disjoint. Variable-free version of nelaneq 9594. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) |
Ref | Expression |
---|---|
epinid0 | ⊢ ( E ∩ I ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eprel 5581 | . . 3 ⊢ E = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦} | |
2 | df-id 5575 | . . 3 ⊢ I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} | |
3 | 1, 2 | ineq12i 4211 | . 2 ⊢ ( E ∩ I ) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}) |
4 | inopab 5830 | . 2 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} | |
5 | nelaneq 9594 | . . . 4 ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦) | |
6 | 5 | gen2 1799 | . . 3 ⊢ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦) |
7 | opab0 5555 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)) | |
8 | 6, 7 | mpbir 230 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} = ∅ |
9 | 3, 4, 8 | 3eqtri 2765 | 1 ⊢ ( E ∩ I ) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 ∀wal 1540 = wceq 1542 ∩ cin 3948 ∅c0 4323 {copab 5211 I cid 5574 E cep 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-reg 9587 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-id 5575 df-eprel 5581 df-xp 5683 df-rel 5684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |