| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epinid0 | Structured version Visualization version GIF version | ||
| Description: The membership relation and the identity relation are disjoint. Variable-free version of nelaneq 9496. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| epinid0 | ⊢ ( E ∩ I ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eprel 5521 | . . 3 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
| 2 | df-id 5516 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 3 | 1, 2 | ineq12i 4167 | . 2 ⊢ ( E ∩ I ) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) |
| 4 | inopab 5775 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} | |
| 5 | nelaneq 9496 | . . . 4 ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦) | |
| 6 | 5 | gen2 1797 | . . 3 ⊢ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦) |
| 7 | opab0 5499 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)) | |
| 8 | 6, 7 | mpbir 231 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} = ∅ |
| 9 | 3, 4, 8 | 3eqtri 2760 | 1 ⊢ ( E ∩ I ) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1539 = wceq 1541 ∩ cin 3897 ∅c0 4282 {copab 5157 I cid 5515 E cep 5520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-reg 9487 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5158 df-id 5516 df-eprel 5521 df-xp 5627 df-rel 5628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |