| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epinid0 | Structured version Visualization version GIF version | ||
| Description: The membership relation and the identity relation are disjoint. Variable-free version of nelaneq 9639. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| epinid0 | ⊢ ( E ∩ I ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eprel 5584 | . . 3 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
| 2 | df-id 5578 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 3 | 1, 2 | ineq12i 4218 | . 2 ⊢ ( E ∩ I ) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) |
| 4 | inopab 5839 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} | |
| 5 | nelaneq 9639 | . . . 4 ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦) | |
| 6 | 5 | gen2 1796 | . . 3 ⊢ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦) |
| 7 | opab0 5559 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)) | |
| 8 | 6, 7 | mpbir 231 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} = ∅ |
| 9 | 3, 4, 8 | 3eqtri 2769 | 1 ⊢ ( E ∩ I ) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1538 = wceq 1540 ∩ cin 3950 ∅c0 4333 {copab 5205 I cid 5577 E cep 5583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-reg 9632 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-opab 5206 df-id 5578 df-eprel 5584 df-xp 5691 df-rel 5692 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |