MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epinid0 Structured version   Visualization version   GIF version

Theorem epinid0 9320
Description: The membership relation and the identity relation are disjoint. Variable-free version of nelaneq 9319. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.)
Assertion
Ref Expression
epinid0 ( E ∩ I ) = ∅

Proof of Theorem epinid0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-eprel 5494 . . 3 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
2 df-id 5488 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
31, 2ineq12i 4149 . 2 ( E ∩ I ) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦})
4 inopab 5736 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑦𝑥 = 𝑦)}
5 nelaneq 9319 . . . 4 ¬ (𝑥𝑦𝑥 = 𝑦)
65gen2 1802 . . 3 𝑥𝑦 ¬ (𝑥𝑦𝑥 = 𝑦)
7 opab0 5468 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝑦𝑥 = 𝑦)} = ∅ ↔ ∀𝑥𝑦 ¬ (𝑥𝑦𝑥 = 𝑦))
86, 7mpbir 230 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑦𝑥 = 𝑦)} = ∅
93, 4, 83eqtri 2771 1 ( E ∩ I ) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1539   = wceq 1541  cin 3890  c0 4261  {copab 5140   I cid 5487   E cep 5493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-reg 9312
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-opab 5141  df-id 5488  df-eprel 5494  df-xp 5594  df-rel 5595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator