Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epinid0 | Structured version Visualization version GIF version |
Description: The membership relation and the identity relation are disjoint. Variable-free version of nelaneq 9406. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) |
Ref | Expression |
---|---|
epinid0 | ⊢ ( E ∩ I ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eprel 5506 | . . 3 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
2 | df-id 5500 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
3 | 1, 2 | ineq12i 4150 | . 2 ⊢ ( E ∩ I ) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) |
4 | inopab 5751 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} | |
5 | nelaneq 9406 | . . . 4 ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦) | |
6 | 5 | gen2 1796 | . . 3 ⊢ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦) |
7 | opab0 5480 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)) | |
8 | 6, 7 | mpbir 230 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} = ∅ |
9 | 3, 4, 8 | 3eqtri 2768 | 1 ⊢ ( E ∩ I ) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 ∀wal 1537 = wceq 1539 ∩ cin 3891 ∅c0 4262 {copab 5143 I cid 5499 E cep 5505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-reg 9399 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-opab 5144 df-id 5500 df-eprel 5506 df-xp 5606 df-rel 5607 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |