MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epinid0 Structured version   Visualization version   GIF version

Theorem epinid0 9489
Description: The membership relation and the identity relation are disjoint. Variable-free version of nelaneq 9487. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.)
Assertion
Ref Expression
epinid0 ( E ∩ I ) = ∅

Proof of Theorem epinid0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-eprel 5516 . . 3 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
2 df-id 5511 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
31, 2ineq12i 4168 . 2 ( E ∩ I ) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦})
4 inopab 5769 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑦𝑥 = 𝑦)}
5 nelaneq 9487 . . . 4 ¬ (𝑥𝑦𝑥 = 𝑦)
65gen2 1797 . . 3 𝑥𝑦 ¬ (𝑥𝑦𝑥 = 𝑦)
7 opab0 5494 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝑦𝑥 = 𝑦)} = ∅ ↔ ∀𝑥𝑦 ¬ (𝑥𝑦𝑥 = 𝑦))
86, 7mpbir 231 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑦𝑥 = 𝑦)} = ∅
93, 4, 83eqtri 2758 1 ( E ∩ I ) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1539   = wceq 1541  cin 3901  c0 4283  {copab 5153   I cid 5510   E cep 5515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-opab 5154  df-id 5511  df-eprel 5516  df-xp 5622  df-rel 5623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator