Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epinid0 | Structured version Visualization version GIF version |
Description: The membership relation and the identity relation are disjoint. Variable-free version of nelaneq 9319. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) |
Ref | Expression |
---|---|
epinid0 | ⊢ ( E ∩ I ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eprel 5494 | . . 3 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
2 | df-id 5488 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
3 | 1, 2 | ineq12i 4149 | . 2 ⊢ ( E ∩ I ) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) |
4 | inopab 5736 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} | |
5 | nelaneq 9319 | . . . 4 ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦) | |
6 | 5 | gen2 1802 | . . 3 ⊢ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦) |
7 | opab0 5468 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)) | |
8 | 6, 7 | mpbir 230 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦)} = ∅ |
9 | 3, 4, 8 | 3eqtri 2771 | 1 ⊢ ( E ∩ I ) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1539 = wceq 1541 ∩ cin 3890 ∅c0 4261 {copab 5140 I cid 5487 E cep 5493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-reg 9312 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-opab 5141 df-id 5488 df-eprel 5494 df-xp 5594 df-rel 5595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |