MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epelg Structured version   Visualization version   GIF version

Theorem epelg 5600
Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5602 and closed form of epeli 5601. Definition 1.6 of [Schloeder] p. 1. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof shortened by BJ, 14-Jul-2023.)
Assertion
Ref Expression
epelg (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem epelg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5167 . . . 4 (𝐴 E 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ E )
2 0nelopab 5586 . . . . . . . 8 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
3 df-eprel 5599 . . . . . . . . . 10 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
43eqcomi 2749 . . . . . . . . 9 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} = E
54eleq2i 2836 . . . . . . . 8 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} ↔ ∅ ∈ E )
62, 5mtbi 322 . . . . . . 7 ¬ ∅ ∈ E
7 eleq1 2832 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ∅ → (⟨𝐴, 𝐵⟩ ∈ E ↔ ∅ ∈ E ))
86, 7mtbiri 327 . . . . . 6 (⟨𝐴, 𝐵⟩ = ∅ → ¬ ⟨𝐴, 𝐵⟩ ∈ E )
98con2i 139 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ E → ¬ ⟨𝐴, 𝐵⟩ = ∅)
10 opprc1 4921 . . . . 5 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
119, 10nsyl2 141 . . . 4 (⟨𝐴, 𝐵⟩ ∈ E → 𝐴 ∈ V)
121, 11sylbi 217 . . 3 (𝐴 E 𝐵𝐴 ∈ V)
1312a1i 11 . 2 (𝐵𝑉 → (𝐴 E 𝐵𝐴 ∈ V))
14 elex 3509 . . 3 (𝐴𝐵𝐴 ∈ V)
1514a1i 11 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
16 eleq12 2834 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
1716, 3brabga 5553 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 E 𝐵𝐴𝐵))
1817expcom 413 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵𝐴𝐵)))
1913, 15, 18pm5.21ndd 379 1 (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cop 4654   class class class wbr 5166  {copab 5228   E cep 5598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-eprel 5599
This theorem is referenced by:  epeli  5601  efrirr  5680  efrn2lp  5681  epin  6125  predep  6362  epne3  7808  cnfcomlem  9768  fpwwe2lem5  10704  ltpiord  10956  orvcelval  34433  bj-epelb  37035  brcnvep  38221  onsupuni  43190  oninfint  43197  onepsuc  43213  cantnfresb  43286  epelon2  43483  alephiso2  43520
  Copyright terms: Public domain W3C validator