| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epelg | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5514 and closed form of epeli 5513. Definition 1.6 of [Schloeder] p. 1. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof shortened by BJ, 14-Jul-2023.) |
| Ref | Expression |
|---|---|
| epelg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5087 | . . . 4 ⊢ (𝐴 E 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ E ) | |
| 2 | 0nelopab 5500 | . . . . . . . 8 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
| 3 | df-eprel 5511 | . . . . . . . . . 10 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
| 4 | 3 | eqcomi 2740 | . . . . . . . . 9 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} = E |
| 5 | 4 | eleq2i 2823 | . . . . . . . 8 ⊢ (∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} ↔ ∅ ∈ E ) |
| 6 | 2, 5 | mtbi 322 | . . . . . . 7 ⊢ ¬ ∅ ∈ E |
| 7 | eleq1 2819 | . . . . . . 7 ⊢ (〈𝐴, 𝐵〉 = ∅ → (〈𝐴, 𝐵〉 ∈ E ↔ ∅ ∈ E )) | |
| 8 | 6, 7 | mtbiri 327 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = ∅ → ¬ 〈𝐴, 𝐵〉 ∈ E ) |
| 9 | 8 | con2i 139 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ E → ¬ 〈𝐴, 𝐵〉 = ∅) |
| 10 | opprc1 4844 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 〈𝐴, 𝐵〉 = ∅) | |
| 11 | 9, 10 | nsyl2 141 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ E → 𝐴 ∈ V) |
| 12 | 1, 11 | sylbi 217 | . . 3 ⊢ (𝐴 E 𝐵 → 𝐴 ∈ V) |
| 13 | 12 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 → 𝐴 ∈ V)) |
| 14 | elex 3457 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 15 | 14 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 → 𝐴 ∈ V)) |
| 16 | eleq12 2821 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵)) | |
| 17 | 16, 3 | brabga 5469 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 18 | 17 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵))) |
| 19 | 13, 15, 18 | pm5.21ndd 379 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 〈cop 4577 class class class wbr 5086 {copab 5148 E cep 5510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-eprel 5511 |
| This theorem is referenced by: epeli 5513 efrirr 5591 efrn2lp 5592 epin 6039 predep 6272 epne3 7701 cnfcomlem 9584 fpwwe2lem5 10521 ltpiord 10773 orvcelval 34474 bj-epelb 37103 brcnvep 38300 onsupuni 43262 oninfint 43269 onepsuc 43285 cantnfresb 43357 epelon2 43554 alephiso2 43591 |
| Copyright terms: Public domain | W3C validator |