MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epelg Structured version   Visualization version   GIF version

Theorem epelg 5577
Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5579 and closed form of epeli 5578. Definition 1.6 of [Schloeder] p. 1. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof shortened by BJ, 14-Jul-2023.)
Assertion
Ref Expression
epelg (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem epelg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5143 . . . 4 (𝐴 E 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ E )
2 0nelopab 5563 . . . . . . . 8 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
3 df-eprel 5576 . . . . . . . . . 10 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
43eqcomi 2737 . . . . . . . . 9 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} = E
54eleq2i 2821 . . . . . . . 8 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} ↔ ∅ ∈ E )
62, 5mtbi 322 . . . . . . 7 ¬ ∅ ∈ E
7 eleq1 2817 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ∅ → (⟨𝐴, 𝐵⟩ ∈ E ↔ ∅ ∈ E ))
86, 7mtbiri 327 . . . . . 6 (⟨𝐴, 𝐵⟩ = ∅ → ¬ ⟨𝐴, 𝐵⟩ ∈ E )
98con2i 139 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ E → ¬ ⟨𝐴, 𝐵⟩ = ∅)
10 opprc1 4893 . . . . 5 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
119, 10nsyl2 141 . . . 4 (⟨𝐴, 𝐵⟩ ∈ E → 𝐴 ∈ V)
121, 11sylbi 216 . . 3 (𝐴 E 𝐵𝐴 ∈ V)
1312a1i 11 . 2 (𝐵𝑉 → (𝐴 E 𝐵𝐴 ∈ V))
14 elex 3489 . . 3 (𝐴𝐵𝐴 ∈ V)
1514a1i 11 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
16 eleq12 2819 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
1716, 3brabga 5530 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 E 𝐵𝐴𝐵))
1817expcom 413 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵𝐴𝐵)))
1913, 15, 18pm5.21ndd 379 1 (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  Vcvv 3470  c0 4318  cop 4630   class class class wbr 5142  {copab 5204   E cep 5575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2937  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-eprel 5576
This theorem is referenced by:  epeli  5578  efrirr  5653  efrn2lp  5654  epin  6093  predep  6330  epne3  7769  cnfcomlem  9716  fpwwe2lem5  10652  ltpiord  10904  orvcelval  34082  bj-epelb  36542  brcnvep  37731  onsupuni  42651  oninfint  42658  onepsuc  42674  cantnfresb  42747  epelon2  42945  alephiso2  42982
  Copyright terms: Public domain W3C validator