![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epelg | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5583 and closed form of epeli 5582. Definition 1.6 of [Schloeder] p. 1. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof shortened by BJ, 14-Jul-2023.) |
Ref | Expression |
---|---|
epelg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . . . 4 ⊢ (𝐴 E 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ E ) | |
2 | 0nelopab 5567 | . . . . . . . 8 ⊢ ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦} | |
3 | df-eprel 5580 | . . . . . . . . . 10 ⊢ E = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦} | |
4 | 3 | eqcomi 2742 | . . . . . . . . 9 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦} = E |
5 | 4 | eleq2i 2826 | . . . . . . . 8 ⊢ (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦} ↔ ∅ ∈ E ) |
6 | 2, 5 | mtbi 322 | . . . . . . 7 ⊢ ¬ ∅ ∈ E |
7 | eleq1 2822 | . . . . . . 7 ⊢ (⟨𝐴, 𝐵⟩ = ∅ → (⟨𝐴, 𝐵⟩ ∈ E ↔ ∅ ∈ E )) | |
8 | 6, 7 | mtbiri 327 | . . . . . 6 ⊢ (⟨𝐴, 𝐵⟩ = ∅ → ¬ ⟨𝐴, 𝐵⟩ ∈ E ) |
9 | 8 | con2i 139 | . . . . 5 ⊢ (⟨𝐴, 𝐵⟩ ∈ E → ¬ ⟨𝐴, 𝐵⟩ = ∅) |
10 | opprc1 4897 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅) | |
11 | 9, 10 | nsyl2 141 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩ ∈ E → 𝐴 ∈ V) |
12 | 1, 11 | sylbi 216 | . . 3 ⊢ (𝐴 E 𝐵 → 𝐴 ∈ V) |
13 | 12 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 → 𝐴 ∈ V)) |
14 | elex 3493 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
15 | 14 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 → 𝐴 ∈ V)) |
16 | eleq12 2824 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵)) | |
17 | 16, 3 | brabga 5534 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
18 | 17 | expcom 415 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵))) |
19 | 13, 15, 18 | pm5.21ndd 381 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4322 ⟨cop 4634 class class class wbr 5148 {copab 5210 E cep 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-eprel 5580 |
This theorem is referenced by: epeli 5582 efrirr 5657 efrn2lp 5658 epin 6092 predep 6329 epne3 7757 cnfcomlem 9691 fpwwe2lem5 10627 ltpiord 10879 orvcelval 33456 bj-epelb 35939 brcnvep 37122 onsupuni 41964 oninfint 41971 onepsuc 41987 cantnfresb 42060 epelon2 42258 alephiso2 42295 |
Copyright terms: Public domain | W3C validator |