MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epelg Structured version   Visualization version   GIF version

Theorem epelg 5581
Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5583 and closed form of epeli 5582. Definition 1.6 of [Schloeder] p. 1. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof shortened by BJ, 14-Jul-2023.)
Assertion
Ref Expression
epelg (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem epelg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5149 . . . 4 (𝐴 E 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ E )
2 0nelopab 5567 . . . . . . . 8 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
3 df-eprel 5580 . . . . . . . . . 10 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
43eqcomi 2742 . . . . . . . . 9 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} = E
54eleq2i 2826 . . . . . . . 8 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} ↔ ∅ ∈ E )
62, 5mtbi 322 . . . . . . 7 ¬ ∅ ∈ E
7 eleq1 2822 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ∅ → (⟨𝐴, 𝐵⟩ ∈ E ↔ ∅ ∈ E ))
86, 7mtbiri 327 . . . . . 6 (⟨𝐴, 𝐵⟩ = ∅ → ¬ ⟨𝐴, 𝐵⟩ ∈ E )
98con2i 139 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ E → ¬ ⟨𝐴, 𝐵⟩ = ∅)
10 opprc1 4897 . . . . 5 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
119, 10nsyl2 141 . . . 4 (⟨𝐴, 𝐵⟩ ∈ E → 𝐴 ∈ V)
121, 11sylbi 216 . . 3 (𝐴 E 𝐵𝐴 ∈ V)
1312a1i 11 . 2 (𝐵𝑉 → (𝐴 E 𝐵𝐴 ∈ V))
14 elex 3493 . . 3 (𝐴𝐵𝐴 ∈ V)
1514a1i 11 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
16 eleq12 2824 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
1716, 3brabga 5534 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 E 𝐵𝐴𝐵))
1817expcom 415 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵𝐴𝐵)))
1913, 15, 18pm5.21ndd 381 1 (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  Vcvv 3475  c0 4322  cop 4634   class class class wbr 5148  {copab 5210   E cep 5579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-eprel 5580
This theorem is referenced by:  epeli  5582  efrirr  5657  efrn2lp  5658  epin  6092  predep  6329  epne3  7757  cnfcomlem  9691  fpwwe2lem5  10627  ltpiord  10879  orvcelval  33456  bj-epelb  35939  brcnvep  37122  onsupuni  41964  oninfint  41971  onepsuc  41987  cantnfresb  42060  epelon2  42258  alephiso2  42295
  Copyright terms: Public domain W3C validator