MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epelg Structured version   Visualization version   GIF version

Theorem epelg 5190
Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5192 and closed form of epeli 5191. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
epelg (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem epelg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4809 . . . 4 (𝐴 E 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ E )
2 elopab 5143 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑦))
3 vex 3352 . . . . . . . . . . 11 𝑥 ∈ V
4 vex 3352 . . . . . . . . . . 11 𝑦 ∈ V
53, 4pm3.2i 462 . . . . . . . . . 10 (𝑥 ∈ V ∧ 𝑦 ∈ V)
6 opeqex 5116 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
75, 6mpbiri 249 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
87simpld 488 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → 𝐴 ∈ V)
98adantr 472 . . . . . . 7 ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑦) → 𝐴 ∈ V)
109exlimivv 2027 . . . . . 6 (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑦) → 𝐴 ∈ V)
112, 10sylbi 208 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} → 𝐴 ∈ V)
12 df-eprel 5189 . . . . 5 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1311, 12eleq2s 2861 . . . 4 (⟨𝐴, 𝐵⟩ ∈ E → 𝐴 ∈ V)
141, 13sylbi 208 . . 3 (𝐴 E 𝐵𝐴 ∈ V)
1514a1i 11 . 2 (𝐵𝑉 → (𝐴 E 𝐵𝐴 ∈ V))
16 elex 3364 . . 3 (𝐴𝐵𝐴 ∈ V)
1716a1i 11 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
18 eleq12 2833 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
1918, 12brabga 5149 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 E 𝐵𝐴𝐵))
2019expcom 402 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵𝐴𝐵)))
2115, 17, 20pm5.21ndd 370 1 (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  Vcvv 3349  cop 4339   class class class wbr 4808  {copab 4870   E cep 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-sep 4940  ax-nul 4948  ax-pr 5061
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-rab 3063  df-v 3351  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-nul 4079  df-if 4243  df-sn 4334  df-pr 4336  df-op 4340  df-br 4809  df-opab 4871  df-eprel 5189
This theorem is referenced by:  epeli  5191  efrirr  5257  efrn2lp  5258  predep  5890  epne3  7177  cnfcomlem  8810  fpwwe2lem6  9709  ltpiord  9961  orvcelval  30912  brcnvep  34396
  Copyright terms: Public domain W3C validator