MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epelg Structured version   Visualization version   GIF version

Theorem epelg 5542
Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5544 and closed form of epeli 5543. Definition 1.6 of [Schloeder] p. 1. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof shortened by BJ, 14-Jul-2023.)
Assertion
Ref Expression
epelg (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem epelg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5111 . . . 4 (𝐴 E 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ E )
2 0nelopab 5530 . . . . . . . 8 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
3 df-eprel 5541 . . . . . . . . . 10 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
43eqcomi 2739 . . . . . . . . 9 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} = E
54eleq2i 2821 . . . . . . . 8 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} ↔ ∅ ∈ E )
62, 5mtbi 322 . . . . . . 7 ¬ ∅ ∈ E
7 eleq1 2817 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ∅ → (⟨𝐴, 𝐵⟩ ∈ E ↔ ∅ ∈ E ))
86, 7mtbiri 327 . . . . . 6 (⟨𝐴, 𝐵⟩ = ∅ → ¬ ⟨𝐴, 𝐵⟩ ∈ E )
98con2i 139 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ E → ¬ ⟨𝐴, 𝐵⟩ = ∅)
10 opprc1 4864 . . . . 5 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
119, 10nsyl2 141 . . . 4 (⟨𝐴, 𝐵⟩ ∈ E → 𝐴 ∈ V)
121, 11sylbi 217 . . 3 (𝐴 E 𝐵𝐴 ∈ V)
1312a1i 11 . 2 (𝐵𝑉 → (𝐴 E 𝐵𝐴 ∈ V))
14 elex 3471 . . 3 (𝐴𝐵𝐴 ∈ V)
1514a1i 11 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
16 eleq12 2819 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
1716, 3brabga 5497 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 E 𝐵𝐴𝐵))
1817expcom 413 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵𝐴𝐵)))
1913, 15, 18pm5.21ndd 379 1 (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  cop 4598   class class class wbr 5110  {copab 5172   E cep 5540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-eprel 5541
This theorem is referenced by:  epeli  5543  efrirr  5621  efrn2lp  5622  epin  6069  predep  6306  epne3  7752  cnfcomlem  9659  fpwwe2lem5  10595  ltpiord  10847  orvcelval  34467  bj-epelb  37064  brcnvep  38261  onsupuni  43225  oninfint  43232  onepsuc  43248  cantnfresb  43320  epelon2  43517  alephiso2  43554
  Copyright terms: Public domain W3C validator