MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epelg Structured version   Visualization version   GIF version

Theorem epelg 5487
Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5489 and closed form of epeli 5488. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof shortened by BJ, 14-Jul-2023.)
Assertion
Ref Expression
epelg (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem epelg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5071 . . . 4 (𝐴 E 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ E )
2 0nelopab 5471 . . . . . . . 8 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
3 df-eprel 5486 . . . . . . . . . 10 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
43eqcomi 2747 . . . . . . . . 9 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} = E
54eleq2i 2830 . . . . . . . 8 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦} ↔ ∅ ∈ E )
62, 5mtbi 321 . . . . . . 7 ¬ ∅ ∈ E
7 eleq1 2826 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ∅ → (⟨𝐴, 𝐵⟩ ∈ E ↔ ∅ ∈ E ))
86, 7mtbiri 326 . . . . . 6 (⟨𝐴, 𝐵⟩ = ∅ → ¬ ⟨𝐴, 𝐵⟩ ∈ E )
98con2i 139 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ E → ¬ ⟨𝐴, 𝐵⟩ = ∅)
10 opprc1 4825 . . . . 5 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
119, 10nsyl2 141 . . . 4 (⟨𝐴, 𝐵⟩ ∈ E → 𝐴 ∈ V)
121, 11sylbi 216 . . 3 (𝐴 E 𝐵𝐴 ∈ V)
1312a1i 11 . 2 (𝐵𝑉 → (𝐴 E 𝐵𝐴 ∈ V))
14 elex 3440 . . 3 (𝐴𝐵𝐴 ∈ V)
1514a1i 11 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
16 eleq12 2828 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
1716, 3brabga 5440 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 E 𝐵𝐴𝐵))
1817expcom 413 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴 E 𝐵𝐴𝐵)))
1913, 15, 18pm5.21ndd 380 1 (𝐵𝑉 → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cop 4564   class class class wbr 5070  {copab 5132   E cep 5485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486
This theorem is referenced by:  epeli  5488  efrirr  5561  efrn2lp  5562  epin  5992  predep  6222  epne3  7601  cnfcomlem  9387  fpwwe2lem5  10322  ltpiord  10574  orvcelval  32335  bj-epelb  35167  brcnvep  36331  epelon2  41026  alephiso2  41054
  Copyright terms: Public domain W3C validator