![]() |
Metamath
Proof Explorer Theorem List (p. 56 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28347) |
![]() (28348-29872) |
![]() (29873-43657) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | xpindi 5501 | Distributive law for Cartesian product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.) |
⊢ (𝐴 × (𝐵 ∩ 𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) | ||
Theorem | xpindir 5502 | Distributive law for Cartesian product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.) |
⊢ ((𝐴 ∩ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) | ||
Theorem | xpiindi 5503* | Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐴 ≠ ∅ → (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵)) | ||
Theorem | xpriindi 5504* | Distributive law for Cartesian product over relativized indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵)) | ||
Theorem | eliunxp 5505* | Membership in a union of Cartesian products. Analogue of elxp 5378 for nonconstant 𝐵(𝑥). (Contributed by Mario Carneiro, 29-Dec-2014.) |
⊢ (𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥∃𝑦(𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | ||
Theorem | opeliunxp2 5506* | Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) ⇒ ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) | ||
Theorem | raliunxp 5507* | Write a double restricted quantification as one universal quantifier. In this version of ralxp 5509, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.) |
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) | ||
Theorem | rexiunxp 5508* | Write a double restricted quantification as one universal quantifier. In this version of rexxp 5510, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) | ||
Theorem | ralxp 5509* | Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) | ||
Theorem | rexxp 5510* | Existential quantification restricted to a Cartesian product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995.) (Revised by Mario Carneiro, 14-Feb-2015.) |
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) | ||
Theorem | exopxfr 5511* | Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦∃𝑧𝜓) | ||
Theorem | exopxfr2 5512* | Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) |
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑧(〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓))) | ||
Theorem | djussxp 5513* | Disjoint union is a subset of a Cartesian product. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) | ||
Theorem | ralxpf 5514* | Version of ralxp 5509 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) | ||
Theorem | rexxpf 5515* | Version of rexxp 5510 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) | ||
Theorem | iunxpf 5516* | Indexed union on a Cartesian product equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.) |
⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) ⇒ ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 | ||
Theorem | opabbi2dv 5517* | Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2897. (Contributed by NM, 24-Feb-2014.) |
⊢ Rel 𝐴 & ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝜓)) ⇒ ⊢ (𝜑 → 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜓}) | ||
Theorem | relop 5518* | A necessary and sufficient condition for a Kuratowski ordered pair to be a relation. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (Rel 〈𝐴, 𝐵〉 ↔ ∃𝑥∃𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦})) | ||
Theorem | ideqg 5519 | For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | ideq 5520 | For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) | ||
Theorem | ididg 5521 | A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | ||
Theorem | issetid 5522 | Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐴 ∈ V ↔ 𝐴 I 𝐴) | ||
Theorem | coss1 5523 | Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | ||
Theorem | coss2 5524 | Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | ||
Theorem | coeq1 5525 | Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | ||
Theorem | coeq2 5526 | Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | ||
Theorem | coeq1i 5527 | Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) | ||
Theorem | coeq2i 5528 | Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) | ||
Theorem | coeq1d 5529 | Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | ||
Theorem | coeq2d 5530 | Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | ||
Theorem | coeq12i 5531 | Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) | ||
Theorem | coeq12d 5532 | Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷)) | ||
Theorem | nfco 5533 | Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) | ||
Theorem | brcog 5534* | Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | ||
Theorem | opelco2g 5535* | Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐷 ∧ 〈𝑥, 𝐵〉 ∈ 𝐶))) | ||
Theorem | brcogw 5536 | Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) | ||
Theorem | eqbrrdva 5537* | Deduction from extensionality principle for relations, given an equivalence only on the relation domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.) |
⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) & ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | brco 5538* | Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) | ||
Theorem | opelco 5539* | Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) | ||
Theorem | cnvss 5540 | Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | ||
Theorem | cnveq 5541 | Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | ||
Theorem | cnveqi 5542 | Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ◡𝐴 = ◡𝐵 | ||
Theorem | cnveqd 5543 | Equality deduction for converse relation. (Contributed by NM, 6-Dec-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ◡𝐴 = ◡𝐵) | ||
Theorem | elcnv 5544* | Membership in a converse relation. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.) |
⊢ (𝐴 ∈ ◡𝑅 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑦𝑅𝑥)) | ||
Theorem | elcnv2 5545* | Membership in a converse relation. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.) |
⊢ (𝐴 ∈ ◡𝑅 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑦, 𝑥〉 ∈ 𝑅)) | ||
Theorem | nfcnv 5546 | Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥◡𝐴 | ||
Theorem | brcnvg 5547 | The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
Theorem | opelcnvg 5548 | Ordered-pair membership in converse relation. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | ||
Theorem | opelcnv 5549 | Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) | ||
Theorem | brcnv 5550 | The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) | ||
Theorem | csbcnv 5551 | Move class substitution in and out of the converse of a relation. Version of csbcnvgALT 5552 without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (Revised by NM, 23-Aug-2018.) |
⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 | ||
Theorem | csbcnvgALT 5552 | Move class substitution in and out of the converse of a relation. Version of csbcnv 5551 with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹) | ||
Theorem | cnvco 5553 | Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | ||
Theorem | cnvuni 5554* | The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.) |
⊢ ◡∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ◡𝑥 | ||
Theorem | dfdm3 5555* | Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} | ||
Theorem | dfrn2 5556* | Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.) |
⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | ||
Theorem | dfrn3 5557* | Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | ||
Theorem | elrn2g 5558* | Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) | ||
Theorem | elrng 5559* | Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) | ||
Theorem | ssrelrn 5560* | If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.) |
⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) | ||
Theorem | dfdm4 5561 | Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
⊢ dom 𝐴 = ran ◡𝐴 | ||
Theorem | dfdmf 5562* | Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | ||
Theorem | csbdm 5563 | Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.) (Revised by NM, 24-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵 | ||
Theorem | eldmg 5564* | Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | ||
Theorem | eldm2g 5565* | Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) | ||
Theorem | eldm 5566* | Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) | ||
Theorem | eldm2 5567* | Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) | ||
Theorem | dmss 5568 | Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) | ||
Theorem | dmeq 5569 | Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | ||
Theorem | dmeqi 5570 | Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ dom 𝐴 = dom 𝐵 | ||
Theorem | dmeqd 5571 | Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → dom 𝐴 = dom 𝐵) | ||
Theorem | opeldmd 5572 | Membership of first of an ordered pair in a domain. Deduction version of opeldm 5573. (Contributed by AV, 11-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) | ||
Theorem | opeldm 5573 | Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) | ||
Theorem | breldm 5574 | Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) | ||
Theorem | breldmg 5575 | Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | ||
Theorem | dmun 5576 | The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) | ||
Theorem | dmin 5577 | The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) | ||
Theorem | dmiun 5578 | The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 | ||
Theorem | dmuni 5579* | The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.) |
⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 | ||
Theorem | dmopab 5580* | The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} | ||
Theorem | dmopabss 5581* | Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | ||
Theorem | dmopab3 5582* | The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) | ||
Theorem | opabssxpd 5583* | An ordered-pair class abstraction is a subset of a Cartesian product. Formerly part of proof for opabex2 7506. (Contributed by AV, 26-Nov-2021.) |
⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (𝐴 × 𝐵)) | ||
Theorem | dm0 5584 | The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ dom ∅ = ∅ | ||
Theorem | dmi 5585 | The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ dom I = V | ||
Theorem | dmv 5586 | The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.) |
⊢ dom V = V | ||
Theorem | dm0rn0 5587 | An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.) |
⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) | ||
Theorem | reldm0 5588 | A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) | ||
Theorem | dmxp 5589 | The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | ||
Theorem | dmxpid 5590 | The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) |
⊢ dom (𝐴 × 𝐴) = 𝐴 | ||
Theorem | dmxpin 5591 | The domain of the intersection of two square Cartesian products. Unlike dmin 5577, equality holds. (Contributed by NM, 29-Jan-2008.) |
⊢ dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴 ∩ 𝐵) | ||
Theorem | xpid11 5592 | The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) | ||
Theorem | dmcnvcnv 5593 | The domain of the double converse of a class (which doesn't have to be a relation as in dfrel2 5837). (Contributed by NM, 8-Apr-2007.) |
⊢ dom ◡◡𝐴 = dom 𝐴 | ||
Theorem | rncnvcnv 5594 | The range of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
⊢ ran ◡◡𝐴 = ran 𝐴 | ||
Theorem | elreldm 5595 | The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.) |
⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) | ||
Theorem | rneq 5596 | Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | ||
Theorem | rneqi 5597 | Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ran 𝐴 = ran 𝐵 | ||
Theorem | rneqd 5598 | Equality deduction for range. (Contributed by NM, 4-Mar-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ran 𝐴 = ran 𝐵) | ||
Theorem | rnss 5599 | Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) | ||
Theorem | rnssi 5600 | Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ran 𝐴 ⊆ ran 𝐵 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |