Home Metamath Proof ExplorerTheorem List (p. 56 of 454) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-28705) Hilbert Space Explorer (28706-30228) Users' Mathboxes (30229-45330)

Theorem List for Metamath Proof Explorer - 5501-5600   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremfr2nr 5501 A well-founded relation has no 2-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))

Theoremfr0 5502 Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
𝑅 Fr ∅

Theoremfrminex 5503* If an element of a well-founded set satisfies a property 𝜑, then there is a minimal element that satisfies 𝜑. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
𝐴 ∈ V    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝑅 Fr 𝐴 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))))

Theoremefrirr 5504 A well-founded class does not belong to itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
( E Fr 𝐴 → ¬ 𝐴𝐴)

Theoremefrn2lp 5505 A well-founded class contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994.)
(( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝐶𝐶𝐵))

Theoremepse 5506 The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
E Se 𝐴

Theoremtz7.2 5507 Similar to Theorem 7.2 of [TakeutiZaring] p. 35, except that the Axiom of Regularity is not required due to the antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.)
((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))

Theoremdfepfr 5508* An alternate way of saying that the membership relation is well-founded. (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))

Theoremepfrc 5509* A subset of a well-founded class has a minimal element. (Contributed by NM, 17-Feb-2004.) (Revised by David Abernethy, 22-Feb-2011.)
𝐵 ∈ V       (( E Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)

Theoremwess 5510 Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.)
(𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))

Theoremweeq1 5511 Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.)
(𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))

Theoremweeq2 5512 Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.)
(𝐴 = 𝐵 → (𝑅 We 𝐴𝑅 We 𝐵))

Theoremwefr 5513 A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.)
(𝑅 We 𝐴𝑅 Fr 𝐴)

Theoremweso 5514 A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.)
(𝑅 We 𝐴𝑅 Or 𝐴)

Theoremwecmpep 5515 The elements of a class well-ordered by membership are comparable. (Contributed by NM, 17-May-1994.)
(( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))

Theoremwetrep 5516 On a class well-ordered by membership, the membership predicate is transitive. (Contributed by NM, 22-Apr-1994.)
(( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))

Theoremwefrc 5517* A nonempty subclass of a class well-ordered by membership has a minimal element. Special case of Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by NM, 17-Feb-2004.)
(( E We 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)

Theoremwe0 5518 Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.)
𝑅 We ∅

Theoremwereu 5519* A subset of a well-ordered set has a unique minimal element. (Contributed by NM, 18-Mar-1997.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)

Theoremwereu2 5520* All nonempty subclasses of a class having a well-ordered and set-like relation have a minimal element for that relation. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 24-Jun-2015.)
(((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)

2.3.10  Relations

Syntaxcxp 5521 Extend the definition of a class to include the Cartesian product.
class (𝐴 × 𝐵)

Syntaxccnv 5522 Extend the definition of a class to include the converse of a class.
class 𝐴

Syntaxcdm 5523 Extend the definition of a class to include the domain of a class.
class dom 𝐴

Syntaxcrn 5524 Extend the definition of a class to include the range of a class.
class ran 𝐴

Syntaxcres 5525 Extend the definition of a class to include the restriction of a class. Read: "the restriction of 𝐴 to 𝐵".
class (𝐴𝐵)

Syntaxcima 5526 Extend the definition of a class to include the image of a class. Read: "the image of 𝐵 under 𝐴".
class (𝐴𝐵)

Syntaxccom 5527 Extend the definition of a class to include the composition of two classes. (Read: The composition of 𝐴 and 𝐵.)
class (𝐴𝐵)

Syntaxwrel 5528 Extend the definition of a wff to include the relation predicate. Read: "𝐴 is a relation".
wff Rel 𝐴

Definitiondf-xp 5529* Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}) (ex-xp 28225). Another example is that the set of rational numbers are defined in df-q 12341 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.)
(𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}

Definitiondf-rel 5530 Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 6017 and dfrel3 6026. (Contributed by NM, 1-Aug-1994.)
(Rel 𝐴𝐴 ⊆ (V × V))

Definitiondf-cnv 5531* Define the converse of a class. Definition 9.12 of [Quine] p. 64. The converse of a binary relation swaps its arguments, i.e., if 𝐴 ∈ V and 𝐵 ∈ V then (𝐴𝑅𝐵𝐵𝑅𝐴), as proven in brcnv 5721 (see df-br 5034 and df-rel 5530 for more on relations). For example, {⟨2, 6⟩, ⟨3, 9⟩} = {⟨6, 2⟩, ⟨9, 3⟩} (ex-cnv 28226). We use Quine's breve accent (smile) notation. Like Quine, we use it as a prefix, which eliminates the need for parentheses. Many authors use the postfix superscript "minus one". The term "converse" is Quine's terminology; some authors call it "inverse", especially when the argument is a function. (Contributed by NM, 4-Jul-1994.)
𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}

Definitiondf-co 5532* Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 28227) because (cos‘0) = 1 (see cos0 15499) and (exp‘1) = e (see df-e 15418). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of , and calls the operation "relative product." (Contributed by NM, 4-Jul-1994.)
(𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}

Definitiondf-dm 5533* Define the domain of a class. Definition 3 of [Suppes] p. 59. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → dom 𝐹 = {2, 3} (ex-dm 28228). Another example is the domain of the complex arctangent, (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) (for proof see atandm 25466). Contrast with range (defined in df-rn 5534). For alternate definitions see dfdm2 6104, dfdm3 5726, and dfdm4 5732. The notation "dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994.)
dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}

Definitiondf-rn 5534 Define the range of a class. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = {6, 9} (ex-rn 28229). Contrast with domain (defined in df-dm 5533). For alternate definitions, see dfrn2 5727, dfrn3 5728, and dfrn4 6030. The notation "ran " is used by Enderton. The range of a function is often also called "the image of the function" (see definition in [Lang] p. ix), which can be justified by imadmrn 5910. Not to be confused with "codomain" (see df-f 6332), which may be a superset/superclass of the range (see frn 6497). (Contributed by NM, 1-Aug-1994.)
ran 𝐴 = dom 𝐴

Definitiondf-res 5535 Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 15469) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 15417 defines the exponential function, which normally allows the exponent to be a complex number). Another example is that (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} 𝐵 = {1, 2}) → (𝐹𝐵) = {⟨2, 6⟩} (ex-res 28230). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6023). (Contributed by NM, 2-Aug-1994.)
(𝐴𝐵) = (𝐴 ∩ (𝐵 × V))

Definitiondf-ima 5536 Define the image of a class (as restricted by another class). Definition 6.6(2) of [TakeutiZaring] p. 24. For example, (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {6} (ex-ima 28231). Contrast with restriction (df-res 5535) and range (df-rn 5534). For an alternate definition, see dfima2 5902. (Contributed by NM, 2-Aug-1994.)
(𝐴𝐵) = ran (𝐴𝐵)

Theoremxpeq1 5537 Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.)
(𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))

Theoremxpss12 5538 Subset theorem for Cartesian product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))

Theoremxpss 5539 A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
(𝐴 × 𝐵) ⊆ (V × V)

Theoreminxpssres 5540 Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019.)
(𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅𝐴)

Theoremrelxp 5541 A Cartesian product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
Rel (𝐴 × 𝐵)

Theoremxpss1 5542 Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.)
(𝐴𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))

Theoremxpss2 5543 Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.)
(𝐴𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵))

Theoremxpeq2 5544 Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.)
(𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵))

Theoremelxpi 5545* Membership in a Cartesian product. Uses fewer axioms than elxp 5546. (Contributed by NM, 4-Jul-1994.)
(𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))

Theoremelxp 5546* Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))

Theoremelxp2 5547* Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004.) (Proof shortened by JJ, 13-Aug-2021.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩)

Theoremxpeq12 5548 Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))

Theoremxpeq1i 5549 Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.)
𝐴 = 𝐵       (𝐴 × 𝐶) = (𝐵 × 𝐶)

Theoremxpeq2i 5550 Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.)
𝐴 = 𝐵       (𝐶 × 𝐴) = (𝐶 × 𝐵)

Theoremxpeq12i 5551 Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴 × 𝐶) = (𝐵 × 𝐷)

Theoremxpeq1d 5552 Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶))

Theoremxpeq2d 5553 Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵))

Theoremxpeq12d 5554 Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷))

Theoremsqxpeqd 5555 Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵))

Theoremnfxp 5556 Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴 × 𝐵)

Theorem0nelxp 5557 The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by JJ, 13-Aug-2021.)
¬ ∅ ∈ (𝐴 × 𝐵)

Theorem0nelelxp 5558 A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.)
(𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶)

Theoremopelxp 5559 Ordered pair membership in a Cartesian product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
(⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))

Theoremopelxpi 5560 Ordered pair membership in a Cartesian product (implication). (Contributed by NM, 28-May-1995.)
((𝐴𝐶𝐵𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))

Theoremopelxpd 5561 Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))

Theoremopelvv 5562 Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       𝐴, 𝐵⟩ ∈ (V × V)

Theoremopelvvg 5563 Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015.)
((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))

Theoremopelxp1 5564 The first member of an ordered pair of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
(⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐴𝐶)

Theoremopelxp2 5565 The second member of an ordered pair of classes in a Cartesian product belongs to second Cartesian product argument. (Contributed by Mario Carneiro, 26-Apr-2015.)
(⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐵𝐷)

Theoremotelxp1 5566 The first member of an ordered triple of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008.)
(⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴𝑅)

Theoremotel3xp 5567 An ordered triple is an element of a doubled Cartesian product. (Contributed by Alexander van der Vekens, 26-Feb-2018.)
((𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ ∧ (𝐴𝑋𝐵𝑌𝐶𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍))

Theoremrabxp 5568* Class abstraction restricted to a Cartesian product as an ordered-pair class abstraction. (Contributed by NM, 20-Feb-2014.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵𝜓)}

Theorembrxp 5569 Binary relation on a Cartesian product. (Contributed by NM, 22-Apr-2004.)
(𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐷))

Theorempwvrel 5570 A set is a binary relation if and only if it belongs to the powerclass of the cartesian square of the universal class. (Contributed by Peter Mazsa, 14-Jun-2018.) (Revised by BJ, 16-Dec-2023.)
(𝐴𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴))

Theorempwvabrel 5571 The powerclass of the cartesian square of the universal class is the class of all sets which are binary relations. (Contributed by BJ, 21-Dec-2023.)
𝒫 (V × V) = {𝑥 ∣ Rel 𝑥}

Theorembrrelex12 5572 Two classes related by a binary relation are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Theorembrrelex1 5573 If two classes are related by a binary relation, then the first class is a set. (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)

Theorembrrelex2 5574 If two classes are related by a binary relation, then the second class is a set. (Contributed by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)

Theorembrrelex12i 5575 Two classes that are related by a binary relation are sets. Inference form. (Contributed by BJ, 3-Oct-2022.)
Rel 𝑅       (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Theorembrrelex1i 5576 The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.)
Rel 𝑅       (𝐴𝑅𝐵𝐴 ∈ V)

Theorembrrelex2i 5577 The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Rel 𝑅       (𝐴𝑅𝐵𝐵 ∈ V)

Theoremnprrel12 5578 Proper classes are not related via any relation. (Contributed by AV, 29-Oct-2021.)
Rel 𝑅       (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ 𝐴𝑅𝐵)

Theoremnprrel 5579 No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.)
Rel 𝑅    &    ¬ 𝐴 ∈ V        ¬ 𝐴𝑅𝐵

Theorem0nelrel0 5580 A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) (Revised by BJ, 14-Jul-2023.)
(Rel 𝑅 → ¬ ∅ ∈ 𝑅)

Theorem0nelrel 5581 A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.)
(Rel 𝑅 → ∅ ∉ 𝑅)

Theoremfconstmpt 5582* Representation of a constant function using the mapping operation. (Note that 𝑥 cannot appear free in 𝐵.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.)
(𝐴 × {𝐵}) = (𝑥𝐴𝐵)

Theoremvtoclr 5583* Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Rel 𝑅    &   ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)       ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)

Theoremopthprc 5584 Justification theorem for an ordered pair definition that works for any classes, including proper classes. This is a possible definition implied by the footnote in [Jech] p. 78, which says, "The sophisticated reader will not object to our use of a pair of classes." (Contributed by NM, 28-Sep-2003.)
(((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Theorembrel 5585 Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝑅 ⊆ (𝐶 × 𝐷)       (𝐴𝑅𝐵 → (𝐴𝐶𝐵𝐷))

Theoremelxp3 5586* Membership in a Cartesian product. (Contributed by NM, 5-Mar-1995.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)))

Theoremopeliunxp 5587 Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
(⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))

Theoremxpundi 5588 Distributive law for Cartesian product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.)
(𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶))

Theoremxpundir 5589 Distributive law for Cartesian product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.)
((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶))

Theoremxpiundi 5590* Distributive law for Cartesian product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
(𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵)

Theoremxpiundir 5591* Distributive law for Cartesian product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
( 𝑥𝐴 𝐵 × 𝐶) = 𝑥𝐴 (𝐵 × 𝐶)

Theoremiunxpconst 5592* Membership in a union of Cartesian products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)

Theoremxpun 5593 The Cartesian product of two unions. (Contributed by NM, 12-Aug-2004.)
((𝐴𝐵) × (𝐶𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))

Theoremelvv 5594* Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.)
(𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)

Theoremelvvv 5595* Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.)
(𝐴 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)

Theoremelvvuni 5596 An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
(𝐴 ∈ (V × V) → 𝐴𝐴)

Theorembrinxp2 5597 Intersection with cross product binary relation. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) Group conjuncts and avoid df-3an 1086. (Revised by Peter Mazsa, 18-Sep-2022.)
(𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷))

Theorembrinxp 5598 Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.)
((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))

Theoremopelinxp 5599 Ordered pair element in an intersection with Cartesian product. (Contributed by Peter Mazsa, 21-Jul-2019.)
(⟨𝐶, 𝐷⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝐶𝐴𝐷𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑅))

Theorempoinxp 5600 Intersection of partial order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
(𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45330
 Copyright terms: Public domain < Previous  Next >