HomeHome Metamath Proof Explorer
Theorem List (p. 56 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 5501-5600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremepn0 5501 The membership relation is nonempty. (Contributed by AV, 19-Jun-2022.)
E ≠ ∅
 
2.3.8  Partial and total orderings

We have not yet defined relations (df-rel 5597), but here we introduce a few related notions we will use to develop ordinals. The class variable 𝑅 is no different from other class variables, but it reminds us that typically it represents what we will later call a "relation".

 
Syntaxwpo 5502 Extend wff notation to include the strict partial ordering predicate. Read: "𝑅 is a partial order on 𝐴".
wff 𝑅 Po 𝐴
 
Syntaxwor 5503 Extend wff notation to include the strict total ordering predicate. Read: "𝑅 orders 𝐴".
wff 𝑅 Or 𝐴
 
Definitiondf-po 5504* Define the strict partial order predicate. Definition of [Enderton] p. 168. The expression 𝑅 Po 𝐴 means 𝑅 is a partial order on 𝐴. For example, < Po ℝ is true, while ≤ Po ℝ is false (ex-po 28808). (Contributed by NM, 16-Mar-1997.)
(𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
 
Definitiondf-so 5505* Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 11064). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.)
(𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
 
Theoremposs 5506 Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
(𝐴𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))
 
Theorempoeq1 5507 Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
(𝑅 = 𝑆 → (𝑅 Po 𝐴𝑆 Po 𝐴))
 
Theorempoeq2 5508 Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
(𝐴 = 𝐵 → (𝑅 Po 𝐴𝑅 Po 𝐵))
 
Theoremnfpo 5509 Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
𝑥𝑅    &   𝑥𝐴       𝑥 𝑅 Po 𝐴
 
Theoremnfso 5510 Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
𝑥𝑅    &   𝑥𝐴       𝑥 𝑅 Or 𝐴
 
Theorempocl 5511 Characteristic properties of a partial order in class notation. (Contributed by NM, 27-Mar-1997.) Reduce axiom usage and shorten proof. (Revised by Gino Giotto, 3-Oct-2024.)
(𝑅 Po 𝐴 → ((𝐵𝐴𝐶𝐴𝐷𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))))
 
TheorempoclOLD 5512 Obsolete version of pocl 5511 as of 3-Oct-2024. (Contributed by NM, 27-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑅 Po 𝐴 → ((𝐵𝐴𝐶𝐴𝐷𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))))
 
Theoremispod 5513* Sufficient conditions for a partial order. (Contributed by NM, 9-Jul-2014.)
((𝜑𝑥𝐴) → ¬ 𝑥𝑅𝑥)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))       (𝜑𝑅 Po 𝐴)
 
Theoremswopolem 5514* Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.)
((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))       ((𝜑 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌)))
 
Theoremswopo 5515* A strict weak order is a partial order. (Contributed by Mario Carneiro, 9-Jul-2014.)
((𝜑 ∧ (𝑦𝐴𝑧𝐴)) → (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦))    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))       (𝜑𝑅 Po 𝐴)
 
Theorempoirr 5516 A partial order is irreflexive. (Contributed by NM, 27-Mar-1997.)
((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
 
Theorempotr 5517 A partial order is a transitive relation. (Contributed by NM, 27-Mar-1997.)
((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
 
Theorempo2nr 5518 A partial order has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.)
((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
 
Theorempo3nr 5519 A partial order has no 3-cycle loops. (Contributed by NM, 27-Mar-1997.)
((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))
 
Theorempo2ne 5520 Two sets related by a partial order are not equal. (Contributed by AV, 13-Mar-2023.)
((𝑅 Po 𝑉 ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝑅𝐵) → 𝐴𝐵)
 
Theorempo0 5521 Any relation is a partial order on the empty set. (Contributed by NM, 28-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝑅 Po ∅
 
Theorempofun 5522* The inverse image of a partial order is a partial order. (Contributed by Jeff Madsen, 18-Jun-2011.)
𝑆 = {⟨𝑥, 𝑦⟩ ∣ 𝑋𝑅𝑌}    &   (𝑥 = 𝑦𝑋 = 𝑌)       ((𝑅 Po 𝐵 ∧ ∀𝑥𝐴 𝑋𝐵) → 𝑆 Po 𝐴)
 
Theoremsopo 5523 A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.)
(𝑅 Or 𝐴𝑅 Po 𝐴)
 
Theoremsoss 5524 Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
 
Theoremsoeq1 5525 Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
(𝑅 = 𝑆 → (𝑅 Or 𝐴𝑆 Or 𝐴))
 
Theoremsoeq2 5526 Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
(𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))
 
Theoremsonr 5527 A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.)
((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
 
Theoremsotr 5528 A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
 
Theoremsolin 5529 A strict order relation is linear (satisfies trichotomy). (Contributed by NM, 21-Jan-1996.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
 
Theoremso2nr 5530 A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
 
Theoremso3nr 5531 A strict order relation has no 3-cycle loops. (Contributed by NM, 21-Jan-1996.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))
 
Theoremsotric 5532 A strict order relation satisfies strict trichotomy. (Contributed by NM, 19-Feb-1996.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
 
Theoremsotrieq 5533 Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
 
Theoremsotrieq2 5534 Trichotomy law for strict order relation. (Contributed by NM, 5-May-1999.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ↔ (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵)))
 
Theoremsoasym 5535 Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021.)
((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑅𝑌 → ¬ 𝑌𝑅𝑋))
 
Theoremsotr2 5536 A transitivity relation. (Read 𝐵𝐶 and 𝐶 < 𝐷 implies 𝐵 < 𝐷.) (Contributed by Mario Carneiro, 10-May-2013.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((¬ 𝐶𝑅𝐵𝐶𝑅𝐷) → 𝐵𝑅𝐷))
 
Theoremissod 5537* An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Po 𝐴)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))       (𝜑𝑅 Or 𝐴)
 
Theoremissoi 5538* An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝑥𝐴 → ¬ 𝑥𝑅𝑥)    &   ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))    &   ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))       𝑅 Or 𝐴
 
Theoremisso2i 5539* Deduce strict ordering from its properties. (Contributed by NM, 29-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 = 𝑦𝑦𝑅𝑥)))    &   ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))       𝑅 Or 𝐴
 
Theoremso0 5540 Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝑅 Or ∅
 
Theoremsomo 5541* A totally ordered set has at most one minimal element. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by NM, 16-Jun-2017.)
(𝑅 Or 𝐴 → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
 
2.3.9  Founded and well-ordering relations
 
Syntaxwfr 5542 Extend wff notation to include the well-founded predicate. Read: "𝑅 is a well-founded relation on 𝐴".
wff 𝑅 Fr 𝐴
 
Syntaxwse 5543 Extend wff notation to include the set-like predicate. Read: "𝑅 is set-like on 𝐴".
wff 𝑅 Se 𝐴
 
Syntaxwwe 5544 Extend wff notation to include the well-ordering predicate. Read: "𝑅 well-orders 𝐴".
wff 𝑅 We 𝐴
 
Definitiondf-fr 5545* Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5554 and dffr3 6010. A class is called well-founded when the membership relation E (see df-eprel 5496) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.)
(𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
 
Definitiondf-se 5546* Define the set-like predicate. (Contributed by Mario Carneiro, 19-Nov-2014.)
(𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
 
Definitiondf-we 5547 Define the well-ordering predicate. For an alternate definition, see dfwe2 7633. (Contributed by NM, 3-Apr-1994.)
(𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
 
Theoremdffr6 5548* Alternate definition of df-fr 5545. See dffr5 33730 for a definition without dummy variables (but note that their equivalence uses ax-sep 5224). (Contributed by BJ, 16-Nov-2024.)
(𝑅 Fr 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
 
Theoremfrd 5549* A nonempty subset of an 𝑅-well-founded class has an 𝑅-minimal element (deduction form). (Contributed by BJ, 16-Nov-2024.)
(𝜑𝑅 Fr 𝐴)    &   (𝜑𝐵𝐴)    &   (𝜑𝐵𝑉)    &   (𝜑𝐵 ≠ ∅)       (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
Theoremfri 5550* A nonempty subset of an 𝑅-well-founded class has an 𝑅-minimal element (inference form). (Contributed by BJ, 16-Nov-2024.) (Proof shortened by BJ, 19-Nov-2024.)
(((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
TheoremfriOLD 5551* Obsolete version of fri 5550 as of 16-Nov-2024. (Contributed by NM, 18-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
Theoremseex 5552* The 𝑅-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.)
((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
 
Theoremexse 5553 Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.)
(𝐴𝑉𝑅 Se 𝐴)
 
Theoremdffr2 5554* Alternate definition of well-founded relation. Similar to Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Mario Carneiro, 23-Jun-2015.) Avoid ax-10 2138, ax-11 2155, ax-12 2172, but use ax-8 2109. (Revised by Gino Giotto, 3-Oct-2024.)
(𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
 
Theoremdffr2ALT 5555* Alternate proof of dffr2 5554, which avoids ax-8 2109 but requires ax-10 2138, ax-11 2155, ax-12 2172. (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Mario Carneiro, 23-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
 
Theoremfrc 5556* Property of well-founded relation (one direction of definition using class variables). (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 19-Nov-2014.)
𝐵 ∈ V       ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} = ∅)
 
Theoremfrss 5557 Subset theorem for the well-founded predicate. Exercise 1 of [TakeutiZaring] p. 31. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))
 
Theoremsess1 5558 Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
(𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
 
Theoremsess2 5559 Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
(𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
 
Theoremfreq1 5560 Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.)
(𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))
 
Theoremfreq2 5561 Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.)
(𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
 
Theoremseeq1 5562 Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
(𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
 
Theoremseeq2 5563 Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
(𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))
 
Theoremnffr 5564 Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝑅    &   𝑥𝐴       𝑥 𝑅 Fr 𝐴
 
Theoremnfse 5565 Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝑅    &   𝑥𝐴       𝑥 𝑅 Se 𝐴
 
Theoremnfwe 5566 Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝑅    &   𝑥𝐴       𝑥 𝑅 We 𝐴
 
Theoremfrirr 5567 A well-founded relation is irreflexive. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 2-Jan-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
((𝑅 Fr 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
 
Theoremfr2nr 5568 A well-founded relation has no 2-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
 
Theoremfr0 5569 Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
𝑅 Fr ∅
 
Theoremfrminex 5570* If an element of a well-founded set satisfies a property 𝜑, then there is a minimal element that satisfies 𝜑. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
𝐴 ∈ V    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝑅 Fr 𝐴 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))))
 
Theoremefrirr 5571 A well-founded class does not belong to itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
( E Fr 𝐴 → ¬ 𝐴𝐴)
 
Theoremefrn2lp 5572 A well-founded class contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994.)
(( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝐶𝐶𝐵))
 
Theoremepse 5573 The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
E Se 𝐴
 
Theoremtz7.2 5574 Similar to Theorem 7.2 of [TakeutiZaring] p. 35, except that the Axiom of Regularity is not required due to the antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.)
((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
 
Theoremdfepfr 5575* An alternate way of saying that the membership relation is well-founded. (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
 
Theoremepfrc 5576* A subset of a well-founded class has a minimal element. (Contributed by NM, 17-Feb-2004.) (Revised by David Abernethy, 22-Feb-2011.)
𝐵 ∈ V       (( E Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
 
Theoremwess 5577 Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.)
(𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))
 
Theoremweeq1 5578 Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.)
(𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))
 
Theoremweeq2 5579 Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.)
(𝐴 = 𝐵 → (𝑅 We 𝐴𝑅 We 𝐵))
 
Theoremwefr 5580 A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.)
(𝑅 We 𝐴𝑅 Fr 𝐴)
 
Theoremweso 5581 A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.)
(𝑅 We 𝐴𝑅 Or 𝐴)
 
Theoremwecmpep 5582 The elements of a class well-ordered by membership are comparable. (Contributed by NM, 17-May-1994.)
(( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
 
Theoremwetrep 5583 On a class well-ordered by membership, the membership predicate is transitive. (Contributed by NM, 22-Apr-1994.)
(( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
 
Theoremwefrc 5584* A nonempty subclass of a class well-ordered by membership has a minimal element. Special case of Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by NM, 17-Feb-2004.)
(( E We 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
 
Theoremwe0 5585 Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.)
𝑅 We ∅
 
Theoremwereu 5586* A nonempty subset of an 𝑅-well-ordered class has a unique 𝑅 -minimal element. (Contributed by NM, 18-Mar-1997.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
Theoremwereu2 5587* A nonempty subclass of an 𝑅-well-ordered and 𝑅-setlike class has a unique 𝑅-minimal element. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 24-Jun-2015.)
(((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
2.3.10  Relations
 
Syntaxcxp 5588 Extend the definition of a class to include the Cartesian product.
class (𝐴 × 𝐵)
 
Syntaxccnv 5589 Extend the definition of a class to include the converse of a class.
class 𝐴
 
Syntaxcdm 5590 Extend the definition of a class to include the domain of a class.
class dom 𝐴
 
Syntaxcrn 5591 Extend the definition of a class to include the range of a class.
class ran 𝐴
 
Syntaxcres 5592 Extend the definition of a class to include the restriction of a class. Read: "the restriction of 𝐴 to 𝐵".
class (𝐴𝐵)
 
Syntaxcima 5593 Extend the definition of a class to include the image of a class. Read: "the image of 𝐵 under 𝐴".
class (𝐴𝐵)
 
Syntaxccom 5594 Extend the definition of a class to include the composition of two classes. (Read: The composition of 𝐴 and 𝐵.)
class (𝐴𝐵)
 
Syntaxwrel 5595 Extend the definition of a wff to include the relation predicate. Read: "𝐴 is a relation".
wff Rel 𝐴
 
Definitiondf-xp 5596* Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}) (ex-xp 28809). Another example is that the set of rational numbers is defined in df-q 12698 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.)
(𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
 
Definitiondf-rel 5597 Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 6097 and dfrel3 6106. (Contributed by NM, 1-Aug-1994.)
(Rel 𝐴𝐴 ⊆ (V × V))
 
Definitiondf-cnv 5598* Define the converse of a class. Definition 9.12 of [Quine] p. 64. The converse of a binary relation swaps its arguments, i.e., if 𝐴 ∈ V and 𝐵 ∈ V then (𝐴𝑅𝐵𝐵𝑅𝐴), as proven in brcnv 5794 (see df-br 5076 and df-rel 5597 for more on relations). For example, {⟨2, 6⟩, ⟨3, 9⟩} = {⟨6, 2⟩, ⟨9, 3⟩} (ex-cnv 28810).

We use Quine's breve accent (smile) notation. Like Quine, we use it as a prefix, which eliminates the need for parentheses. "Converse" is Quine's terminology. Some authors use a "minus one" exponent and call it "inverse", especially when the argument is a function, although this is not in general a genuine inverse. (Contributed by NM, 4-Jul-1994.)

𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
 
Definitiondf-co 5599* Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 28811) because (cos‘0) = 1 (see cos0 15868) and (exp‘1) = e (see df-e 15787). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
(𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
 
Definitiondf-dm 5600* Define the domain of a class. Definition 3 of [Suppes] p. 59. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → dom 𝐹 = {2, 3} (ex-dm 28812). Another example is the domain of the complex arctangent, (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) (for proof see atandm 26035). Contrast with range (defined in df-rn 5601). For alternate definitions see dfdm2 6188, dfdm3 5799, and dfdm4 5807. The notation "dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994.)
dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >