MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rele Structured version   Visualization version   GIF version

Theorem rele 5824
Description: The membership relation is a relation. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
rele Rel E

Proof of Theorem rele
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-eprel 5577 . 2 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
21relopabiv 5817 1 Rel E
Colors of variables: wff setvar class
Syntax hints:   E cep 5576  Rel wrel 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3472  df-in 3952  df-ss 3962  df-opab 5206  df-eprel 5577  df-xp 5679  df-rel 5680
This theorem is referenced by:  bj-epelg  36542  bj-epelb  36543  cnambfre  37136  brcnvep  37732
  Copyright terms: Public domain W3C validator