Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rele | Structured version Visualization version GIF version |
Description: The membership relation is a relation. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
rele | ⊢ Rel E |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eprel 5486 | . 2 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel E |
Colors of variables: wff setvar class |
Syntax hints: E cep 5485 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-eprel 5486 df-xp 5586 df-rel 5587 |
This theorem is referenced by: bj-epelg 35166 bj-epelb 35167 cnambfre 35752 brcnvep 36331 |
Copyright terms: Public domain | W3C validator |