MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rele Structured version   Visualization version   GIF version

Theorem rele 5851
Description: The membership relation is a relation. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
rele Rel E

Proof of Theorem rele
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-eprel 5599 . 2 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
21relopabiv 5844 1 Rel E
Colors of variables: wff setvar class
Syntax hints:   E cep 5598  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-opab 5229  df-eprel 5599  df-xp 5706  df-rel 5707
This theorem is referenced by:  bj-epelg  37034  bj-epelb  37035  cnambfre  37628  brcnvep  38221
  Copyright terms: Public domain W3C validator