MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rele Structured version   Visualization version   GIF version

Theorem rele 5771
Description: The membership relation is a relation. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
rele Rel E

Proof of Theorem rele
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-eprel 5519 . 2 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
21relopabiv 5764 1 Rel E
Colors of variables: wff setvar class
Syntax hints:   E cep 5518  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-ss 3915  df-opab 5156  df-eprel 5519  df-xp 5625  df-rel 5626
This theorem is referenced by:  bj-epelg  37133  bj-epelb  37134  cnambfre  37728  brcnvep  38322
  Copyright terms: Public domain W3C validator