MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rele Structured version   Visualization version   GIF version

Theorem rele 5681
Description: The membership relation is a relation. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
rele Rel E

Proof of Theorem rele
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-eprel 5444 . 2 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
21relopabiv 5674 1 Rel E
Colors of variables: wff setvar class
Syntax hints:   E cep 5443  Rel wrel 5540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-v 3402  df-in 3860  df-ss 3870  df-opab 5103  df-eprel 5444  df-xp 5541  df-rel 5542
This theorem is referenced by:  bj-epelg  34894  bj-epelb  34895  cnambfre  35481  brcnvep  36060
  Copyright terms: Public domain W3C validator