![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfnelbr2 | Structured version Visualization version GIF version |
Description: Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021.) |
Ref | Expression |
---|---|
dfnelbr2 | ⊢ _∉ = ((V × V) ∖ E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difopab 5820 | . 2 ⊢ ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)} | |
2 | df-xp 5672 | . . 3 ⊢ (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
3 | df-eprel 5570 | . . 3 ⊢ E = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦} | |
4 | 2, 3 | difeq12i 4112 | . 2 ⊢ ((V × V) ∖ E ) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑦}) |
5 | df-nelbr 46431 | . . 3 ⊢ _∉ = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥 ∈ 𝑦} | |
6 | vex 3470 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | vex 3470 | . . . . . 6 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
9 | 8 | biantrur 530 | . . . 4 ⊢ (¬ 𝑥 ∈ 𝑦 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)) |
10 | 9 | opabbii 5205 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥 ∈ 𝑦} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)} |
11 | 5, 10 | eqtri 2752 | . 2 ⊢ _∉ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)} |
12 | 1, 4, 11 | 3eqtr4ri 2763 | 1 ⊢ _∉ = ((V × V) ∖ E ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∖ cdif 3937 {copab 5200 E cep 5569 × cxp 5664 _∉ cnelbr 46430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-opab 5201 df-eprel 5570 df-xp 5672 df-rel 5673 df-nelbr 46431 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |