Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfnelbr2 Structured version   Visualization version   GIF version

Theorem dfnelbr2 47188
Description: Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021.)
Assertion
Ref Expression
dfnelbr2 _∉ = ((V × V) ∖ E )

Proof of Theorem dfnelbr2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difopab 5854 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥𝑦)}
2 df-xp 5706 . . 3 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
3 df-eprel 5599 . . 3 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
42, 3difeq12i 4147 . 2 ((V × V) ∖ E ) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦})
5 df-nelbr 47187 . . 3 _∉ = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥𝑦}
6 vex 3492 . . . . . 6 𝑥 ∈ V
7 vex 3492 . . . . . 6 𝑦 ∈ V
86, 7pm3.2i 470 . . . . 5 (𝑥 ∈ V ∧ 𝑦 ∈ V)
98biantrur 530 . . . 4 𝑥𝑦 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥𝑦))
109opabbii 5233 . . 3 {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥𝑦} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥𝑦)}
115, 10eqtri 2768 . 2 _∉ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥𝑦)}
121, 4, 113eqtr4ri 2779 1 _∉ = ((V × V) ∖ E )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  {copab 5228   E cep 5598   × cxp 5698   _∉ cnelbr 47186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-eprel 5599  df-xp 5706  df-rel 5707  df-nelbr 47187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator