| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfnelbr2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| dfnelbr2 | ⊢ _∉ = ((V × V) ∖ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difopab 5814 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)} | |
| 2 | df-xp 5665 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
| 3 | df-eprel 5558 | . . 3 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
| 4 | 2, 3 | difeq12i 4104 | . 2 ⊢ ((V × V) ∖ E ) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦}) |
| 5 | df-nelbr 47268 | . . 3 ⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} | |
| 6 | vex 3468 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 7 | vex 3468 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 8 | 6, 7 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 9 | 8 | biantrur 530 | . . . 4 ⊢ (¬ 𝑥 ∈ 𝑦 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)) |
| 10 | 9 | opabbii 5191 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)} |
| 11 | 5, 10 | eqtri 2759 | . 2 ⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)} |
| 12 | 1, 4, 11 | 3eqtr4ri 2770 | 1 ⊢ _∉ = ((V × V) ∖ E ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 {copab 5186 E cep 5557 × cxp 5657 _∉ cnelbr 47267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-eprel 5558 df-xp 5665 df-rel 5666 df-nelbr 47268 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |