![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfnelbr2 | Structured version Visualization version GIF version |
Description: Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021.) |
Ref | Expression |
---|---|
dfnelbr2 | ⊢ _∉ = ((V × V) ∖ E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difopab 5854 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)} | |
2 | df-xp 5706 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
3 | df-eprel 5599 | . . 3 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
4 | 2, 3 | difeq12i 4147 | . 2 ⊢ ((V × V) ∖ E ) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦}) |
5 | df-nelbr 47187 | . . 3 ⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} | |
6 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | vex 3492 | . . . . . 6 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
9 | 8 | biantrur 530 | . . . 4 ⊢ (¬ 𝑥 ∈ 𝑦 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)) |
10 | 9 | opabbii 5233 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)} |
11 | 5, 10 | eqtri 2768 | . 2 ⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)} |
12 | 1, 4, 11 | 3eqtr4ri 2779 | 1 ⊢ _∉ = ((V × V) ∖ E ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 {copab 5228 E cep 5598 × cxp 5698 _∉ cnelbr 47186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-eprel 5599 df-xp 5706 df-rel 5707 df-nelbr 47187 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |