Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-eqvrels Structured version   Visualization version   GIF version

Definition df-eqvrels 37758
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 37768. Alternate definitions are dfeqvrels2 37762 and dfeqvrels3 37763. (Contributed by Peter Mazsa, 7-Nov-2018.)
Assertion
Ref Expression
df-eqvrels EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )

Detailed syntax breakdown of Definition df-eqvrels
StepHypRef Expression
1 ceqvrels 37363 . 2 class EqvRels
2 crefrels 37352 . . . 4 class RefRels
3 csymrels 37358 . . . 4 class SymRels
42, 3cin 3948 . . 3 class ( RefRels ∩ SymRels )
5 ctrrels 37361 . . 3 class TrRels
64, 5cin 3948 . 2 class (( RefRels ∩ SymRels ) ∩ TrRels )
71, 6wceq 1540 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
Colors of variables: wff setvar class
This definition is referenced by:  dfeqvrels2  37762  refrelsredund2  37807
  Copyright terms: Public domain W3C validator