| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrels | Structured version Visualization version GIF version | ||
| Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38700. Alternate definitions are dfeqvrels2 38694 and dfeqvrels3 38695. (Contributed by Peter Mazsa, 7-Nov-2018.) |
| Ref | Expression |
|---|---|
| df-eqvrels | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqvrels 38248 | . 2 class EqvRels | |
| 2 | crefrels 38237 | . . . 4 class RefRels | |
| 3 | csymrels 38243 | . . . 4 class SymRels | |
| 4 | 2, 3 | cin 3896 | . . 3 class ( RefRels ∩ SymRels ) |
| 5 | ctrrels 38246 | . . 3 class TrRels | |
| 6 | 4, 5 | cin 3896 | . 2 class (( RefRels ∩ SymRels ) ∩ TrRels ) |
| 7 | 1, 6 | wceq 1541 | 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfeqvrels2 38694 refrelsredund2 38739 |
| Copyright terms: Public domain | W3C validator |