Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-eqvrels Structured version   Visualization version   GIF version

Definition df-eqvrels 36697
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 36707. Alternate definitions are dfeqvrels2 36701 and dfeqvrels3 36702. (Contributed by Peter Mazsa, 7-Nov-2018.)
Assertion
Ref Expression
df-eqvrels EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )

Detailed syntax breakdown of Definition df-eqvrels
StepHypRef Expression
1 ceqvrels 36349 . 2 class EqvRels
2 crefrels 36338 . . . 4 class RefRels
3 csymrels 36344 . . . 4 class SymRels
42, 3cin 3886 . . 3 class ( RefRels ∩ SymRels )
5 ctrrels 36347 . . 3 class TrRels
64, 5cin 3886 . 2 class (( RefRels ∩ SymRels ) ∩ TrRels )
71, 6wceq 1539 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
Colors of variables: wff setvar class
This definition is referenced by:  dfeqvrels2  36701  refrelsredund2  36746
  Copyright terms: Public domain W3C validator