Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-eqvrels Structured version   Visualization version   GIF version

Definition df-eqvrels 38566
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38576. Alternate definitions are dfeqvrels2 38570 and dfeqvrels3 38571. (Contributed by Peter Mazsa, 7-Nov-2018.)
Assertion
Ref Expression
df-eqvrels EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )

Detailed syntax breakdown of Definition df-eqvrels
StepHypRef Expression
1 ceqvrels 38178 . 2 class EqvRels
2 crefrels 38167 . . . 4 class RefRels
3 csymrels 38173 . . . 4 class SymRels
42, 3cin 3962 . . 3 class ( RefRels ∩ SymRels )
5 ctrrels 38176 . . 3 class TrRels
64, 5cin 3962 . 2 class (( RefRels ∩ SymRels ) ∩ TrRels )
71, 6wceq 1537 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
Colors of variables: wff setvar class
This definition is referenced by:  dfeqvrels2  38570  refrelsredund2  38615
  Copyright terms: Public domain W3C validator