| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrels | Structured version Visualization version GIF version | ||
| Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38558. Alternate definitions are dfeqvrels2 38552 and dfeqvrels3 38553. (Contributed by Peter Mazsa, 7-Nov-2018.) |
| Ref | Expression |
|---|---|
| df-eqvrels | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqvrels 38158 | . 2 class EqvRels | |
| 2 | crefrels 38147 | . . . 4 class RefRels | |
| 3 | csymrels 38153 | . . . 4 class SymRels | |
| 4 | 2, 3 | cin 3910 | . . 3 class ( RefRels ∩ SymRels ) |
| 5 | ctrrels 38156 | . . 3 class TrRels | |
| 6 | 4, 5 | cin 3910 | . 2 class (( RefRels ∩ SymRels ) ∩ TrRels ) |
| 7 | 1, 6 | wceq 1540 | 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfeqvrels2 38552 refrelsredund2 38597 |
| Copyright terms: Public domain | W3C validator |