![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrels | Structured version Visualization version GIF version |
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 37768. Alternate definitions are dfeqvrels2 37762 and dfeqvrels3 37763. (Contributed by Peter Mazsa, 7-Nov-2018.) |
Ref | Expression |
---|---|
df-eqvrels | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqvrels 37363 | . 2 class EqvRels | |
2 | crefrels 37352 | . . . 4 class RefRels | |
3 | csymrels 37358 | . . . 4 class SymRels | |
4 | 2, 3 | cin 3948 | . . 3 class ( RefRels ∩ SymRels ) |
5 | ctrrels 37361 | . . 3 class TrRels | |
6 | 4, 5 | cin 3948 | . 2 class (( RefRels ∩ SymRels ) ∩ TrRels ) |
7 | 1, 6 | wceq 1540 | 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfeqvrels2 37762 refrelsredund2 37807 |
Copyright terms: Public domain | W3C validator |