![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrels | Structured version Visualization version GIF version |
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 37459. Alternate definitions are dfeqvrels2 37453 and dfeqvrels3 37454. (Contributed by Peter Mazsa, 7-Nov-2018.) |
Ref | Expression |
---|---|
df-eqvrels | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqvrels 37054 | . 2 class EqvRels | |
2 | crefrels 37043 | . . . 4 class RefRels | |
3 | csymrels 37049 | . . . 4 class SymRels | |
4 | 2, 3 | cin 3947 | . . 3 class ( RefRels ∩ SymRels ) |
5 | ctrrels 37052 | . . 3 class TrRels | |
6 | 4, 5 | cin 3947 | . 2 class (( RefRels ∩ SymRels ) ∩ TrRels ) |
7 | 1, 6 | wceq 1541 | 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfeqvrels2 37453 refrelsredund2 37498 |
Copyright terms: Public domain | W3C validator |