Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrels | Structured version Visualization version GIF version |
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 36707. Alternate definitions are dfeqvrels2 36701 and dfeqvrels3 36702. (Contributed by Peter Mazsa, 7-Nov-2018.) |
Ref | Expression |
---|---|
df-eqvrels | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqvrels 36349 | . 2 class EqvRels | |
2 | crefrels 36338 | . . . 4 class RefRels | |
3 | csymrels 36344 | . . . 4 class SymRels | |
4 | 2, 3 | cin 3886 | . . 3 class ( RefRels ∩ SymRels ) |
5 | ctrrels 36347 | . . 3 class TrRels | |
6 | 4, 5 | cin 3886 | . 2 class (( RefRels ∩ SymRels ) ∩ TrRels ) |
7 | 1, 6 | wceq 1539 | 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfeqvrels2 36701 refrelsredund2 36746 |
Copyright terms: Public domain | W3C validator |