| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrels | Structured version Visualization version GIF version | ||
| Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38585. Alternate definitions are dfeqvrels2 38579 and dfeqvrels3 38580. (Contributed by Peter Mazsa, 7-Nov-2018.) |
| Ref | Expression |
|---|---|
| df-eqvrels | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqvrels 38185 | . 2 class EqvRels | |
| 2 | crefrels 38174 | . . . 4 class RefRels | |
| 3 | csymrels 38180 | . . . 4 class SymRels | |
| 4 | 2, 3 | cin 3913 | . . 3 class ( RefRels ∩ SymRels ) |
| 5 | ctrrels 38183 | . . 3 class TrRels | |
| 6 | 4, 5 | cin 3913 | . 2 class (( RefRels ∩ SymRels ) ∩ TrRels ) |
| 7 | 1, 6 | wceq 1540 | 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfeqvrels2 38579 refrelsredund2 38624 |
| Copyright terms: Public domain | W3C validator |