Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-eqvrels Structured version   Visualization version   GIF version

Definition df-eqvrels 37757
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 37767. Alternate definitions are dfeqvrels2 37761 and dfeqvrels3 37762. (Contributed by Peter Mazsa, 7-Nov-2018.)
Assertion
Ref Expression
df-eqvrels EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )

Detailed syntax breakdown of Definition df-eqvrels
StepHypRef Expression
1 ceqvrels 37362 . 2 class EqvRels
2 crefrels 37351 . . . 4 class RefRels
3 csymrels 37357 . . . 4 class SymRels
42, 3cin 3946 . . 3 class ( RefRels ∩ SymRels )
5 ctrrels 37360 . . 3 class TrRels
64, 5cin 3946 . 2 class (( RefRels ∩ SymRels ) ∩ TrRels )
71, 6wceq 1539 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
Colors of variables: wff setvar class
This definition is referenced by:  dfeqvrels2  37761  refrelsredund2  37806
  Copyright terms: Public domain W3C validator