Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-eqvrels Structured version   Visualization version   GIF version

Definition df-eqvrels 38540
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38550. Alternate definitions are dfeqvrels2 38544 and dfeqvrels3 38545. (Contributed by Peter Mazsa, 7-Nov-2018.)
Assertion
Ref Expression
df-eqvrels EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )

Detailed syntax breakdown of Definition df-eqvrels
StepHypRef Expression
1 ceqvrels 38151 . 2 class EqvRels
2 crefrels 38140 . . . 4 class RefRels
3 csymrels 38146 . . . 4 class SymRels
42, 3cin 3975 . . 3 class ( RefRels ∩ SymRels )
5 ctrrels 38149 . . 3 class TrRels
64, 5cin 3975 . 2 class (( RefRels ∩ SymRels ) ∩ TrRels )
71, 6wceq 1537 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
Colors of variables: wff setvar class
This definition is referenced by:  dfeqvrels2  38544  refrelsredund2  38589
  Copyright terms: Public domain W3C validator