Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-eqvrels Structured version   Visualization version   GIF version

Definition df-eqvrels 36624
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 36634. Alternate definitions are dfeqvrels2 36628 and dfeqvrels3 36629. (Contributed by Peter Mazsa, 7-Nov-2018.)
Assertion
Ref Expression
df-eqvrels EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )

Detailed syntax breakdown of Definition df-eqvrels
StepHypRef Expression
1 ceqvrels 36276 . 2 class EqvRels
2 crefrels 36265 . . . 4 class RefRels
3 csymrels 36271 . . . 4 class SymRels
42, 3cin 3882 . . 3 class ( RefRels ∩ SymRels )
5 ctrrels 36274 . . 3 class TrRels
64, 5cin 3882 . 2 class (( RefRels ∩ SymRels ) ∩ TrRels )
71, 6wceq 1539 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
Colors of variables: wff setvar class
This definition is referenced by:  dfeqvrels2  36628  refrelsredund2  36673
  Copyright terms: Public domain W3C validator