| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrels | Structured version Visualization version GIF version | ||
| Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38575. Alternate definitions are dfeqvrels2 38569 and dfeqvrels3 38570. (Contributed by Peter Mazsa, 7-Nov-2018.) |
| Ref | Expression |
|---|---|
| df-eqvrels | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqvrels 38175 | . 2 class EqvRels | |
| 2 | crefrels 38164 | . . . 4 class RefRels | |
| 3 | csymrels 38170 | . . . 4 class SymRels | |
| 4 | 2, 3 | cin 3902 | . . 3 class ( RefRels ∩ SymRels ) |
| 5 | ctrrels 38173 | . . 3 class TrRels | |
| 6 | 4, 5 | cin 3902 | . 2 class (( RefRels ∩ SymRels ) ∩ TrRels ) |
| 7 | 1, 6 | wceq 1540 | 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfeqvrels2 38569 refrelsredund2 38614 |
| Copyright terms: Public domain | W3C validator |