| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrels | Structured version Visualization version GIF version | ||
| Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38617. Alternate definitions are dfeqvrels2 38611 and dfeqvrels3 38612. (Contributed by Peter Mazsa, 7-Nov-2018.) |
| Ref | Expression |
|---|---|
| df-eqvrels | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqvrels 38220 | . 2 class EqvRels | |
| 2 | crefrels 38209 | . . . 4 class RefRels | |
| 3 | csymrels 38215 | . . . 4 class SymRels | |
| 4 | 2, 3 | cin 3930 | . . 3 class ( RefRels ∩ SymRels ) |
| 5 | ctrrels 38218 | . . 3 class TrRels | |
| 6 | 4, 5 | cin 3930 | . 2 class (( RefRels ∩ SymRels ) ∩ TrRels ) |
| 7 | 1, 6 | wceq 1540 | 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfeqvrels2 38611 refrelsredund2 38656 |
| Copyright terms: Public domain | W3C validator |