![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrels | Structured version Visualization version GIF version |
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38055. Alternate definitions are dfeqvrels2 38049 and dfeqvrels3 38050. (Contributed by Peter Mazsa, 7-Nov-2018.) |
Ref | Expression |
---|---|
df-eqvrels | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqvrels 37653 | . 2 class EqvRels | |
2 | crefrels 37642 | . . . 4 class RefRels | |
3 | csymrels 37648 | . . . 4 class SymRels | |
4 | 2, 3 | cin 3943 | . . 3 class ( RefRels ∩ SymRels ) |
5 | ctrrels 37651 | . . 3 class TrRels | |
6 | 4, 5 | cin 3943 | . 2 class (( RefRels ∩ SymRels ) ∩ TrRels ) |
7 | 1, 6 | wceq 1534 | 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfeqvrels2 38049 refrelsredund2 38094 |
Copyright terms: Public domain | W3C validator |