Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-eqvrels Structured version   Visualization version   GIF version

Definition df-eqvrels 37449
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 37459. Alternate definitions are dfeqvrels2 37453 and dfeqvrels3 37454. (Contributed by Peter Mazsa, 7-Nov-2018.)
Assertion
Ref Expression
df-eqvrels EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )

Detailed syntax breakdown of Definition df-eqvrels
StepHypRef Expression
1 ceqvrels 37054 . 2 class EqvRels
2 crefrels 37043 . . . 4 class RefRels
3 csymrels 37049 . . . 4 class SymRels
42, 3cin 3947 . . 3 class ( RefRels ∩ SymRels )
5 ctrrels 37052 . . 3 class TrRels
64, 5cin 3947 . 2 class (( RefRels ∩ SymRels ) ∩ TrRels )
71, 6wceq 1541 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
Colors of variables: wff setvar class
This definition is referenced by:  dfeqvrels2  37453  refrelsredund2  37498
  Copyright terms: Public domain W3C validator