Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-eqvrels Structured version   Visualization version   GIF version

Definition df-eqvrels 38565
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38575. Alternate definitions are dfeqvrels2 38569 and dfeqvrels3 38570. (Contributed by Peter Mazsa, 7-Nov-2018.)
Assertion
Ref Expression
df-eqvrels EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )

Detailed syntax breakdown of Definition df-eqvrels
StepHypRef Expression
1 ceqvrels 38175 . 2 class EqvRels
2 crefrels 38164 . . . 4 class RefRels
3 csymrels 38170 . . . 4 class SymRels
42, 3cin 3902 . . 3 class ( RefRels ∩ SymRels )
5 ctrrels 38173 . . 3 class TrRels
64, 5cin 3902 . 2 class (( RefRels ∩ SymRels ) ∩ TrRels )
71, 6wceq 1540 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
Colors of variables: wff setvar class
This definition is referenced by:  dfeqvrels2  38569  refrelsredund2  38614
  Copyright terms: Public domain W3C validator