![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrels | Structured version Visualization version GIF version |
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38550. Alternate definitions are dfeqvrels2 38544 and dfeqvrels3 38545. (Contributed by Peter Mazsa, 7-Nov-2018.) |
Ref | Expression |
---|---|
df-eqvrels | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqvrels 38151 | . 2 class EqvRels | |
2 | crefrels 38140 | . . . 4 class RefRels | |
3 | csymrels 38146 | . . . 4 class SymRels | |
4 | 2, 3 | cin 3975 | . . 3 class ( RefRels ∩ SymRels ) |
5 | ctrrels 38149 | . . 3 class TrRels | |
6 | 4, 5 | cin 3975 | . 2 class (( RefRels ∩ SymRels ) ∩ TrRels ) |
7 | 1, 6 | wceq 1537 | 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfeqvrels2 38544 refrelsredund2 38589 |
Copyright terms: Public domain | W3C validator |