Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrels | Structured version Visualization version GIF version |
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 36634. Alternate definitions are dfeqvrels2 36628 and dfeqvrels3 36629. (Contributed by Peter Mazsa, 7-Nov-2018.) |
Ref | Expression |
---|---|
df-eqvrels | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqvrels 36276 | . 2 class EqvRels | |
2 | crefrels 36265 | . . . 4 class RefRels | |
3 | csymrels 36271 | . . . 4 class SymRels | |
4 | 2, 3 | cin 3882 | . . 3 class ( RefRels ∩ SymRels ) |
5 | ctrrels 36274 | . . 3 class TrRels | |
6 | 4, 5 | cin 3882 | . 2 class (( RefRels ∩ SymRels ) ∩ TrRels ) |
7 | 1, 6 | wceq 1539 | 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfeqvrels2 36628 refrelsredund2 36673 |
Copyright terms: Public domain | W3C validator |