![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrels | Structured version Visualization version GIF version |
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 37767. Alternate definitions are dfeqvrels2 37761 and dfeqvrels3 37762. (Contributed by Peter Mazsa, 7-Nov-2018.) |
Ref | Expression |
---|---|
df-eqvrels | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqvrels 37362 | . 2 class EqvRels | |
2 | crefrels 37351 | . . . 4 class RefRels | |
3 | csymrels 37357 | . . . 4 class SymRels | |
4 | 2, 3 | cin 3946 | . . 3 class ( RefRels ∩ SymRels ) |
5 | ctrrels 37360 | . . 3 class TrRels | |
6 | 4, 5 | cin 3946 | . 2 class (( RefRels ∩ SymRels ) ∩ TrRels ) |
7 | 1, 6 | wceq 1539 | 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) |
Colors of variables: wff setvar class |
This definition is referenced by: dfeqvrels2 37761 refrelsredund2 37806 |
Copyright terms: Public domain | W3C validator |