Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-eqvrels Structured version   Visualization version   GIF version

Definition df-eqvrels 38575
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38585. Alternate definitions are dfeqvrels2 38579 and dfeqvrels3 38580. (Contributed by Peter Mazsa, 7-Nov-2018.)
Assertion
Ref Expression
df-eqvrels EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )

Detailed syntax breakdown of Definition df-eqvrels
StepHypRef Expression
1 ceqvrels 38185 . 2 class EqvRels
2 crefrels 38174 . . . 4 class RefRels
3 csymrels 38180 . . . 4 class SymRels
42, 3cin 3913 . . 3 class ( RefRels ∩ SymRels )
5 ctrrels 38183 . . 3 class TrRels
64, 5cin 3913 . 2 class (( RefRels ∩ SymRels ) ∩ TrRels )
71, 6wceq 1540 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
Colors of variables: wff setvar class
This definition is referenced by:  dfeqvrels2  38579  refrelsredund2  38624
  Copyright terms: Public domain W3C validator