Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-eqvrels Structured version   Visualization version   GIF version

Definition df-eqvrels 38690
Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38700. Alternate definitions are dfeqvrels2 38694 and dfeqvrels3 38695. (Contributed by Peter Mazsa, 7-Nov-2018.)
Assertion
Ref Expression
df-eqvrels EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )

Detailed syntax breakdown of Definition df-eqvrels
StepHypRef Expression
1 ceqvrels 38248 . 2 class EqvRels
2 crefrels 38237 . . . 4 class RefRels
3 csymrels 38243 . . . 4 class SymRels
42, 3cin 3896 . . 3 class ( RefRels ∩ SymRels )
5 ctrrels 38246 . . 3 class TrRels
64, 5cin 3896 . 2 class (( RefRels ∩ SymRels ) ∩ TrRels )
71, 6wceq 1541 1 wff EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
Colors of variables: wff setvar class
This definition is referenced by:  dfeqvrels2  38694  refrelsredund2  38739
  Copyright terms: Public domain W3C validator