Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeqvrels3 Structured version   Visualization version   GIF version

Theorem dfeqvrels3 36254
 Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.)
Assertion
Ref Expression
dfeqvrels3 EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))}
Distinct variable group:   𝑥,𝑟,𝑦,𝑧

Proof of Theorem dfeqvrels3
StepHypRef Expression
1 dfeqvrels2 36253 . 2 EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
2 idrefALT 5943 . . 3 (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥)
3 cnvsym 5944 . . 3 (𝑟𝑟 ↔ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥))
4 cotr 5942 . . 3 ((𝑟𝑟) ⊆ 𝑟 ↔ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))
52, 3, 43anbi123i 1153 . 2 ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))
61, 5rabbieq 35942 1 EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))}
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   ∧ w3a 1085  ∀wal 1537   = wceq 1539  ∀wral 3071  {crab 3075   ⊆ wss 3859   class class class wbr 5030   I cid 5427  ◡ccnv 5521  dom cdm 5522   ↾ cres 5524   ∘ ccom 5526   Rels crels 35885   EqvRels ceqvrels 35899 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-op 4527  df-br 5031  df-opab 5093  df-id 5428  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-rels 36155  df-ssr 36168  df-refs 36180  df-refrels 36181  df-syms 36208  df-symrels 36209  df-trs 36238  df-trrels 36239  df-eqvrels 36249 This theorem is referenced by:  eleqvrels3  36258
 Copyright terms: Public domain W3C validator