Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeqvrels3 Structured version   Visualization version   GIF version

Theorem dfeqvrels3 37763
Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.)
Assertion
Ref Expression
dfeqvrels3 EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))}
Distinct variable group:   𝑥,𝑟,𝑦,𝑧

Proof of Theorem dfeqvrels3
StepHypRef Expression
1 dfeqvrels2 37762 . 2 EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
2 idrefALT 6112 . . 3 (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥)
3 cnvsym 6113 . . 3 (𝑟𝑟 ↔ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥))
4 cotr 6111 . . 3 ((𝑟𝑟) ⊆ 𝑟 ↔ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))
52, 3, 43anbi123i 1154 . 2 ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))
61, 5rabbieq 37422 1 EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wral 3060  {crab 3431  wss 3948   class class class wbr 5148   I cid 5573  ccnv 5675  dom cdm 5676  cres 5678  ccom 5680   Rels crels 37349   EqvRels ceqvrels 37363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-rels 37659  df-ssr 37672  df-refs 37684  df-refrels 37685  df-syms 37716  df-symrels 37717  df-trs 37746  df-trrels 37747  df-eqvrels 37758
This theorem is referenced by:  eleqvrels3  37767
  Copyright terms: Public domain W3C validator