Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeqvrels3 Structured version   Visualization version   GIF version

Theorem dfeqvrels3 35828
Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.)
Assertion
Ref Expression
dfeqvrels3 EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))}
Distinct variable group:   𝑥,𝑟,𝑦,𝑧

Proof of Theorem dfeqvrels3
StepHypRef Expression
1 dfeqvrels2 35827 . 2 EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
2 idrefALT 5976 . . 3 (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥)
3 cnvsym 5977 . . 3 (𝑟𝑟 ↔ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥))
4 cotr 5975 . . 3 ((𝑟𝑟) ⊆ 𝑟 ↔ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))
52, 3, 43anbi123i 1151 . 2 ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))
61, 5rabbieq 35516 1 EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wal 1534   = wceq 1536  wral 3141  {crab 3145  wss 3939   class class class wbr 5069   I cid 5462  ccnv 5557  dom cdm 5558  cres 5560  ccom 5562   Rels crels 35459   EqvRels ceqvrels 35473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-rels 35729  df-ssr 35742  df-refs 35754  df-refrels 35755  df-syms 35782  df-symrels 35783  df-trs 35812  df-trrels 35813  df-eqvrels 35823
This theorem is referenced by:  eleqvrels3  35832
  Copyright terms: Public domain W3C validator