![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeqvrels3 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
Ref | Expression |
---|---|
dfeqvrels3 | ⊢ EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfeqvrels2 37761 | . 2 ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | |
2 | idrefALT 6111 | . . 3 ⊢ (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥) | |
3 | cnvsym 6112 | . . 3 ⊢ (◡𝑟 ⊆ 𝑟 ↔ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥)) | |
4 | cotr 6110 | . . 3 ⊢ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) | |
5 | 2, 3, 4 | 3anbi123i 1153 | . 2 ⊢ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))) |
6 | 1, 5 | rabbieq 37421 | 1 ⊢ EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∀wral 3059 {crab 3430 ⊆ wss 3947 class class class wbr 5147 I cid 5572 ◡ccnv 5674 dom cdm 5675 ↾ cres 5677 ∘ ccom 5679 Rels crels 37348 EqvRels ceqvrels 37362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-rels 37658 df-ssr 37671 df-refs 37683 df-refrels 37684 df-syms 37715 df-symrels 37716 df-trs 37745 df-trrels 37746 df-eqvrels 37757 |
This theorem is referenced by: eleqvrels3 37766 |
Copyright terms: Public domain | W3C validator |