Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeqvrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
Ref | Expression |
---|---|
dfeqvrels2 | ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eqvrels 36624 | . . 3 ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | |
2 | refsymrels2 36606 | . . . 4 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | |
3 | dftrrels2 36616 | . . . 4 ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | |
4 | 2, 3 | ineq12i 4141 | . . 3 ⊢ (( RefRels ∩ SymRels ) ∩ TrRels ) = ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟}) |
5 | inrab 4237 | . . 3 ⊢ ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | |
6 | 1, 4, 5 | 3eqtri 2770 | . 2 ⊢ EqvRels = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
7 | df-3an 1087 | . . 3 ⊢ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)) | |
8 | 7 | rabbii 3397 | . 2 ⊢ {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
9 | 6, 8 | eqtr4i 2769 | 1 ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1539 {crab 3067 ∩ cin 3882 ⊆ wss 3883 I cid 5479 ◡ccnv 5579 dom cdm 5580 ↾ cres 5582 ∘ ccom 5584 Rels crels 36262 RefRels crefrels 36265 SymRels csymrels 36271 TrRels ctrrels 36274 EqvRels ceqvrels 36276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-rels 36530 df-ssr 36543 df-refs 36555 df-refrels 36556 df-syms 36583 df-symrels 36584 df-trs 36613 df-trrels 36614 df-eqvrels 36624 |
This theorem is referenced by: dfeqvrels3 36629 eleqvrels2 36632 |
Copyright terms: Public domain | W3C validator |