![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeqvrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
Ref | Expression |
---|---|
dfeqvrels2 | ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eqvrels 34816 | . . 3 ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | |
2 | refsymrels2 34798 | . . . 4 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | |
3 | dftrrels2 34808 | . . . 4 ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | |
4 | 2, 3 | ineq12i 4009 | . . 3 ⊢ (( RefRels ∩ SymRels ) ∩ TrRels ) = ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟}) |
5 | inrab 4098 | . . 3 ⊢ ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | |
6 | 1, 4, 5 | 3eqtri 2824 | . 2 ⊢ EqvRels = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
7 | df-3an 1110 | . . 3 ⊢ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)) | |
8 | 7 | rabbii 3368 | . 2 ⊢ {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
9 | 6, 8 | eqtr4i 2823 | 1 ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 ∧ w3a 1108 = wceq 1653 {crab 3092 ∩ cin 3767 ⊆ wss 3768 I cid 5218 ◡ccnv 5310 dom cdm 5311 ↾ cres 5313 ∘ ccom 5315 Rels crels 34464 RefRels crefrels 34467 SymRels csymrels 34473 TrRels ctrrels 34476 EqvRels ceqvrels 34478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pr 5096 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3386 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-op 4374 df-br 4843 df-opab 4905 df-id 5219 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-rels 34722 df-ssr 34735 df-refs 34747 df-refrels 34748 df-syms 34775 df-symrels 34776 df-trs 34805 df-trrels 34806 df-eqvrels 34816 |
This theorem is referenced by: dfeqvrels3 34820 eleqvrels2 34823 |
Copyright terms: Public domain | W3C validator |