Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeqvrels2 Structured version   Visualization version   GIF version

Theorem dfeqvrels2 38611
Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.)
Assertion
Ref Expression
dfeqvrels2 EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}

Proof of Theorem dfeqvrels2
StepHypRef Expression
1 df-eqvrels 38607 . . 3 EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
2 refsymrels2 38588 . . . 4 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
3 dftrrels2 38598 . . . 4 TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}
42, 3ineq12i 4198 . . 3 (( RefRels ∩ SymRels ) ∩ TrRels ) = ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟})
5 inrab 4296 . . 3 ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ∧ (𝑟𝑟) ⊆ 𝑟)}
61, 4, 53eqtri 2763 . 2 EqvRels = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ∧ (𝑟𝑟) ⊆ 𝑟)}
7 df-3an 1088 . . 3 ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ∧ (𝑟𝑟) ⊆ 𝑟))
87rabbii 3426 . 2 {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ∧ (𝑟𝑟) ⊆ 𝑟)}
96, 8eqtr4i 2762 1 EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  {crab 3420  cin 3930  wss 3931   I cid 5552  ccnv 5658  dom cdm 5659  cres 5661  ccom 5663   Rels crels 38206   RefRels crefrels 38209   SymRels csymrels 38215   TrRels ctrrels 38218   EqvRels ceqvrels 38220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-rels 38508  df-ssr 38521  df-refs 38533  df-refrels 38534  df-syms 38565  df-symrels 38566  df-trs 38595  df-trrels 38596  df-eqvrels 38607
This theorem is referenced by:  dfeqvrels3  38612  eleqvrels2  38615
  Copyright terms: Public domain W3C validator