| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeqvrels2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
| Ref | Expression |
|---|---|
| dfeqvrels2 | ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eqvrels 38582 | . . 3 ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | |
| 2 | refsymrels2 38563 | . . . 4 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | |
| 3 | dftrrels2 38573 | . . . 4 ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | |
| 4 | 2, 3 | ineq12i 4184 | . . 3 ⊢ (( RefRels ∩ SymRels ) ∩ TrRels ) = ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟}) |
| 5 | inrab 4282 | . . 3 ⊢ ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | |
| 6 | 1, 4, 5 | 3eqtri 2757 | . 2 ⊢ EqvRels = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
| 7 | df-3an 1088 | . . 3 ⊢ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)) | |
| 8 | 7 | rabbii 3414 | . 2 ⊢ {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
| 9 | 6, 8 | eqtr4i 2756 | 1 ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 {crab 3408 ∩ cin 3916 ⊆ wss 3917 I cid 5535 ◡ccnv 5640 dom cdm 5641 ↾ cres 5643 ∘ ccom 5645 Rels crels 38178 RefRels crefrels 38181 SymRels csymrels 38187 TrRels ctrrels 38190 EqvRels ceqvrels 38192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-rels 38483 df-ssr 38496 df-refs 38508 df-refrels 38509 df-syms 38540 df-symrels 38541 df-trs 38570 df-trrels 38571 df-eqvrels 38582 |
| This theorem is referenced by: dfeqvrels3 38587 eleqvrels2 38590 |
| Copyright terms: Public domain | W3C validator |