Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeqvrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
Ref | Expression |
---|---|
dfeqvrels2 | ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eqvrels 36697 | . . 3 ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | |
2 | refsymrels2 36679 | . . . 4 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | |
3 | dftrrels2 36689 | . . . 4 ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | |
4 | 2, 3 | ineq12i 4144 | . . 3 ⊢ (( RefRels ∩ SymRels ) ∩ TrRels ) = ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟}) |
5 | inrab 4240 | . . 3 ⊢ ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | |
6 | 1, 4, 5 | 3eqtri 2770 | . 2 ⊢ EqvRels = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
7 | df-3an 1088 | . . 3 ⊢ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)) | |
8 | 7 | rabbii 3408 | . 2 ⊢ {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
9 | 6, 8 | eqtr4i 2769 | 1 ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1086 = wceq 1539 {crab 3068 ∩ cin 3886 ⊆ wss 3887 I cid 5488 ◡ccnv 5588 dom cdm 5589 ↾ cres 5591 ∘ ccom 5593 Rels crels 36335 RefRels crefrels 36338 SymRels csymrels 36344 TrRels ctrrels 36347 EqvRels ceqvrels 36349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-rels 36603 df-ssr 36616 df-refs 36628 df-refrels 36629 df-syms 36656 df-symrels 36657 df-trs 36686 df-trrels 36687 df-eqvrels 36697 |
This theorem is referenced by: dfeqvrels3 36702 eleqvrels2 36705 |
Copyright terms: Public domain | W3C validator |