Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeqvrels2 Structured version   Visualization version   GIF version

Theorem dfeqvrels2 38589
Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.)
Assertion
Ref Expression
dfeqvrels2 EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}

Proof of Theorem dfeqvrels2
StepHypRef Expression
1 df-eqvrels 38585 . . 3 EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
2 refsymrels2 38566 . . . 4 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
3 dftrrels2 38576 . . . 4 TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}
42, 3ineq12i 4218 . . 3 (( RefRels ∩ SymRels ) ∩ TrRels ) = ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟})
5 inrab 4316 . . 3 ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ∧ (𝑟𝑟) ⊆ 𝑟)}
61, 4, 53eqtri 2769 . 2 EqvRels = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ∧ (𝑟𝑟) ⊆ 𝑟)}
7 df-3an 1089 . . 3 ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ∧ (𝑟𝑟) ⊆ 𝑟))
87rabbii 3442 . 2 {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ∧ (𝑟𝑟) ⊆ 𝑟)}
96, 8eqtr4i 2768 1 EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1540  {crab 3436  cin 3950  wss 3951   I cid 5577  ccnv 5684  dom cdm 5685  cres 5687  ccom 5689   Rels crels 38184   RefRels crefrels 38187   SymRels csymrels 38193   TrRels ctrrels 38196   EqvRels ceqvrels 38198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-rels 38486  df-ssr 38499  df-refs 38511  df-refrels 38512  df-syms 38543  df-symrels 38544  df-trs 38573  df-trrels 38574  df-eqvrels 38585
This theorem is referenced by:  dfeqvrels3  38590  eleqvrels2  38593
  Copyright terms: Public domain W3C validator