![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeqvrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
Ref | Expression |
---|---|
dfeqvrels2 | ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eqvrels 37075 | . . 3 ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | |
2 | refsymrels2 37056 | . . . 4 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | |
3 | dftrrels2 37066 | . . . 4 ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | |
4 | 2, 3 | ineq12i 4175 | . . 3 ⊢ (( RefRels ∩ SymRels ) ∩ TrRels ) = ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟}) |
5 | inrab 4271 | . . 3 ⊢ ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | |
6 | 1, 4, 5 | 3eqtri 2769 | . 2 ⊢ EqvRels = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
7 | df-3an 1090 | . . 3 ⊢ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)) | |
8 | 7 | rabbii 3416 | . 2 ⊢ {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
9 | 6, 8 | eqtr4i 2768 | 1 ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∧ w3a 1088 = wceq 1542 {crab 3410 ∩ cin 3914 ⊆ wss 3915 I cid 5535 ◡ccnv 5637 dom cdm 5638 ↾ cres 5640 ∘ ccom 5642 Rels crels 36665 RefRels crefrels 36668 SymRels csymrels 36674 TrRels ctrrels 36677 EqvRels ceqvrels 36679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-rels 36976 df-ssr 36989 df-refs 37001 df-refrels 37002 df-syms 37033 df-symrels 37034 df-trs 37063 df-trrels 37064 df-eqvrels 37075 |
This theorem is referenced by: dfeqvrels3 37080 eleqvrels2 37083 |
Copyright terms: Public domain | W3C validator |