Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeqvrels2 Structured version   Visualization version   GIF version

Theorem dfeqvrels2 38572
Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.)
Assertion
Ref Expression
dfeqvrels2 EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}

Proof of Theorem dfeqvrels2
StepHypRef Expression
1 df-eqvrels 38568 . . 3 EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
2 refsymrels2 38549 . . . 4 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
3 dftrrels2 38559 . . . 4 TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}
42, 3ineq12i 4177 . . 3 (( RefRels ∩ SymRels ) ∩ TrRels ) = ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟})
5 inrab 4275 . . 3 ({𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)} ∩ {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}) = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ∧ (𝑟𝑟) ⊆ 𝑟)}
61, 4, 53eqtri 2756 . 2 EqvRels = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ∧ (𝑟𝑟) ⊆ 𝑟)}
7 df-3an 1088 . . 3 ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ∧ (𝑟𝑟) ⊆ 𝑟))
87rabbii 3408 . 2 {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} = {𝑟 ∈ Rels ∣ ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ∧ (𝑟𝑟) ⊆ 𝑟)}
96, 8eqtr4i 2755 1 EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  {crab 3402  cin 3910  wss 3911   I cid 5525  ccnv 5630  dom cdm 5631  cres 5633  ccom 5635   Rels crels 38164   RefRels crefrels 38167   SymRels csymrels 38173   TrRels ctrrels 38176   EqvRels ceqvrels 38178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-rels 38469  df-ssr 38482  df-refs 38494  df-refrels 38495  df-syms 38526  df-symrels 38527  df-trs 38556  df-trrels 38557  df-eqvrels 38568
This theorem is referenced by:  dfeqvrels3  38573  eleqvrels2  38576
  Copyright terms: Public domain W3C validator