Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelressn Structured version   Visualization version   GIF version

Theorem trrelressn 36797
Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 36656) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024.)
Assertion
Ref Expression
trrelressn TrRel (𝑅 ↾ {𝐴})

Proof of Theorem trrelressn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trressn 36659 . 2 𝑥𝑦𝑧((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧)
2 relres 5932 . 2 Rel (𝑅 ↾ {𝐴})
3 dftrrel3 36792 . 2 ( TrRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥𝑦𝑧((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) ∧ Rel (𝑅 ↾ {𝐴})))
41, 2, 3mpbir2an 709 1 TrRel (𝑅 ↾ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wal 1537  {csn 4565   class class class wbr 5081  cres 5602  Rel wrel 5605   TrRel wtrrel 36396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-trrel 36788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator