| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trrelressn | Structured version Visualization version GIF version | ||
| Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38423) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024.) |
| Ref | Expression |
|---|---|
| trrelressn | ⊢ TrRel (𝑅 ↾ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trressn 38426 | . 2 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) | |
| 2 | relres 5956 | . 2 ⊢ Rel (𝑅 ↾ {𝐴}) | |
| 3 | dftrrel3 38559 | . 2 ⊢ ( TrRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥∀𝑦∀𝑧((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) ∧ Rel (𝑅 ↾ {𝐴}))) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ TrRel (𝑅 ↾ {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 {csn 4577 class class class wbr 5092 ↾ cres 5621 Rel wrel 5624 TrRel wtrrel 38174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-trrel 38555 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |