Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelressn Structured version   Visualization version   GIF version

Theorem trrelressn 38601
Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38460) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024.)
Assertion
Ref Expression
trrelressn TrRel (𝑅 ↾ {𝐴})

Proof of Theorem trrelressn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trressn 38463 . 2 𝑥𝑦𝑧((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧)
2 relres 5992 . 2 Rel (𝑅 ↾ {𝐴})
3 dftrrel3 38596 . 2 ( TrRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥𝑦𝑧((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) ∧ Rel (𝑅 ↾ {𝐴})))
41, 2, 3mpbir2an 711 1 TrRel (𝑅 ↾ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  {csn 4601   class class class wbr 5119  cres 5656  Rel wrel 5659   TrRel wtrrel 38214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-trrel 38592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator