![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trrelressn | Structured version Visualization version GIF version |
Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38424) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024.) |
Ref | Expression |
---|---|
trrelressn | ⊢ TrRel (𝑅 ↾ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trressn 38427 | . 2 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) | |
2 | relres 6026 | . 2 ⊢ Rel (𝑅 ↾ {𝐴}) | |
3 | dftrrel3 38560 | . 2 ⊢ ( TrRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥∀𝑦∀𝑧((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) ∧ Rel (𝑅 ↾ {𝐴}))) | |
4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ TrRel (𝑅 ↾ {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 {csn 4631 class class class wbr 5148 ↾ cres 5691 Rel wrel 5694 TrRel wtrrel 38177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-trrel 38556 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |