Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleqvrelsrel Structured version   Visualization version   GIF version

Theorem eleqvrelsrel 38575
Description: For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa, 24-Aug-2021.)
Assertion
Ref Expression
eleqvrelsrel (𝑅𝑉 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))

Proof of Theorem eleqvrelsrel
StepHypRef Expression
1 elrelsrel 38468 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
21anbi2d 630 . 2 (𝑅𝑉 → (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅)))
3 eleqvrels2 38573 . 2 (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels ))
4 dfeqvrel2 38571 . 2 ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
52, 3, 43bitr4g 314 1 (𝑅𝑉 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wss 3903   I cid 5513  ccnv 5618  dom cdm 5619  cres 5621  ccom 5623  Rel wrel 5624   Rels crels 38161   EqvRels ceqvrels 38175   EqvRel weqvrel 38176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-rels 38466  df-ssr 38479  df-refs 38491  df-refrels 38492  df-refrel 38493  df-syms 38523  df-symrels 38524  df-symrel 38525  df-trs 38553  df-trrels 38554  df-trrel 38555  df-eqvrels 38565  df-eqvrel 38566
This theorem is referenced by:  elcoeleqvrelsrel  38577  brerser  38659
  Copyright terms: Public domain W3C validator