Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleqvrelsrel Structured version   Visualization version   GIF version

Theorem eleqvrelsrel 37459
Description: For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa, 24-Aug-2021.)
Assertion
Ref Expression
eleqvrelsrel (𝑅𝑉 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))

Proof of Theorem eleqvrelsrel
StepHypRef Expression
1 elrelsrel 37352 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
21anbi2d 629 . 2 (𝑅𝑉 → (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅)))
3 eleqvrels2 37457 . 2 (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels ))
4 dfeqvrel2 37455 . 2 ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
52, 3, 43bitr4g 313 1 (𝑅𝑉 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wcel 2106  wss 3948   I cid 5573  ccnv 5675  dom cdm 5676  cres 5678  ccom 5680  Rel wrel 5681   Rels crels 37040   EqvRels ceqvrels 37054   EqvRel weqvrel 37055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-rels 37350  df-ssr 37363  df-refs 37375  df-refrels 37376  df-refrel 37377  df-syms 37407  df-symrels 37408  df-symrel 37409  df-trs 37437  df-trrels 37438  df-trrel 37439  df-eqvrels 37449  df-eqvrel 37450
This theorem is referenced by:  elcoeleqvrelsrel  37461  brerser  37542
  Copyright terms: Public domain W3C validator