Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleqvrelsrel Structured version   Visualization version   GIF version

Theorem eleqvrelsrel 36634
Description: For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa, 24-Aug-2021.)
Assertion
Ref Expression
eleqvrelsrel (𝑅𝑉 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))

Proof of Theorem eleqvrelsrel
StepHypRef Expression
1 elrelsrel 36532 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
21anbi2d 628 . 2 (𝑅𝑉 → (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅)))
3 eleqvrels2 36632 . 2 (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels ))
4 dfeqvrel2 36630 . 2 ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
52, 3, 43bitr4g 313 1 (𝑅𝑉 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2108  wss 3883   I cid 5479  ccnv 5579  dom cdm 5580  cres 5582  ccom 5584  Rel wrel 5585   Rels crels 36262   EqvRels ceqvrels 36276   EqvRel weqvrel 36277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-rels 36530  df-ssr 36543  df-refs 36555  df-refrels 36556  df-refrel 36557  df-syms 36583  df-symrels 36584  df-symrel 36585  df-trs 36613  df-trrels 36614  df-trrel 36615  df-eqvrels 36624  df-eqvrel 36625
This theorem is referenced by:  elcoeleqvrelsrel  36636  brerser  36715
  Copyright terms: Public domain W3C validator