![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelsredund2 | Structured version Visualization version GIF version |
Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38495) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
Ref | Expression |
---|---|
refrelsredund2 | ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrelsredund4 38614 | . 2 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 | |
2 | df-eqvrels 38566 | . . . 4 ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | |
3 | inss1 4245 | . . . 4 ⊢ (( RefRels ∩ SymRels ) ∩ TrRels ) ⊆ ( RefRels ∩ SymRels ) | |
4 | 2, 3 | eqsstri 4030 | . . 3 ⊢ EqvRels ⊆ ( RefRels ∩ SymRels ) |
5 | 4 | redundss3 38610 | . 2 ⊢ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 → {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 |
Colors of variables: wff setvar class |
Syntax hints: {crab 3433 ∩ cin 3962 ⊆ wss 3963 I cid 5582 dom cdm 5689 ↾ cres 5691 Rels crels 38164 RefRels crefrels 38167 SymRels csymrels 38173 TrRels ctrrels 38176 EqvRels ceqvrels 38178 Redund wredund 38183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-rels 38467 df-ssr 38480 df-refs 38492 df-refrels 38493 df-syms 38524 df-symrels 38525 df-eqvrels 38566 df-redund 38606 |
This theorem is referenced by: refrelsredund3 38616 |
Copyright terms: Public domain | W3C validator |