Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelsredund2 Structured version   Visualization version   GIF version

Theorem refrelsredund2 37124
Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 37004) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.)
Assertion
Ref Expression
refrelsredund2 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , EqvRels ⟩

Proof of Theorem refrelsredund2
StepHypRef Expression
1 refrelsredund4 37123 . 2 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩
2 df-eqvrels 37075 . . . 4 EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
3 inss1 4193 . . . 4 (( RefRels ∩ SymRels ) ∩ TrRels ) ⊆ ( RefRels ∩ SymRels )
42, 3eqsstri 3983 . . 3 EqvRels ⊆ ( RefRels ∩ SymRels )
54redundss3 37119 . 2 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩ → {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , EqvRels ⟩)
61, 5ax-mp 5 1 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , EqvRels ⟩
Colors of variables: wff setvar class
Syntax hints:  {crab 3410  cin 3914  wss 3915   I cid 5535  dom cdm 5638  cres 5640   Rels crels 36665   RefRels crefrels 36668   SymRels csymrels 36674   TrRels ctrrels 36677   EqvRels ceqvrels 36679   Redund wredund 36684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-rels 36976  df-ssr 36989  df-refs 37001  df-refrels 37002  df-syms 37033  df-symrels 37034  df-eqvrels 37075  df-redund 37115
This theorem is referenced by:  refrelsredund3  37125
  Copyright terms: Public domain W3C validator