Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelsredund2 | Structured version Visualization version GIF version |
Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 36752) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
Ref | Expression |
---|---|
refrelsredund2 | ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrelsredund4 36871 | . 2 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 | |
2 | df-eqvrels 36823 | . . . 4 ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | |
3 | inss1 4172 | . . . 4 ⊢ (( RefRels ∩ SymRels ) ∩ TrRels ) ⊆ ( RefRels ∩ SymRels ) | |
4 | 2, 3 | eqsstri 3964 | . . 3 ⊢ EqvRels ⊆ ( RefRels ∩ SymRels ) |
5 | 4 | redundss3 36867 | . 2 ⊢ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 → {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 |
Colors of variables: wff setvar class |
Syntax hints: {crab 3403 ∩ cin 3895 ⊆ wss 3896 I cid 5505 dom cdm 5607 ↾ cres 5609 Rels crels 36412 RefRels crefrels 36415 SymRels csymrels 36421 TrRels ctrrels 36424 EqvRels ceqvrels 36426 Redund wredund 36431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-dm 5617 df-rn 5618 df-res 5619 df-rels 36724 df-ssr 36737 df-refs 36749 df-refrels 36750 df-syms 36781 df-symrels 36782 df-eqvrels 36823 df-redund 36863 |
This theorem is referenced by: refrelsredund3 36873 |
Copyright terms: Public domain | W3C validator |