| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelsredund2 | Structured version Visualization version GIF version | ||
| Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38473) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| Ref | Expression |
|---|---|
| refrelsredund2 | ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrelsredund4 38592 | . 2 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 | |
| 2 | df-eqvrels 38544 | . . . 4 ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | |
| 3 | inss1 4217 | . . . 4 ⊢ (( RefRels ∩ SymRels ) ∩ TrRels ) ⊆ ( RefRels ∩ SymRels ) | |
| 4 | 2, 3 | eqsstri 4010 | . . 3 ⊢ EqvRels ⊆ ( RefRels ∩ SymRels ) |
| 5 | 4 | redundss3 38588 | . 2 ⊢ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 → {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 |
| Colors of variables: wff setvar class |
| Syntax hints: {crab 3419 ∩ cin 3930 ⊆ wss 3931 I cid 5557 dom cdm 5665 ↾ cres 5667 Rels crels 38143 RefRels crefrels 38146 SymRels csymrels 38152 TrRels ctrrels 38155 EqvRels ceqvrels 38157 Redund wredund 38162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-rels 38445 df-ssr 38458 df-refs 38470 df-refrels 38471 df-syms 38502 df-symrels 38503 df-eqvrels 38544 df-redund 38584 |
| This theorem is referenced by: refrelsredund3 38594 |
| Copyright terms: Public domain | W3C validator |