Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelsredund2 Structured version   Visualization version   GIF version

Theorem refrelsredund2 38042
Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 37922) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.)
Assertion
Ref Expression
refrelsredund2 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , EqvRels ⟩

Proof of Theorem refrelsredund2
StepHypRef Expression
1 refrelsredund4 38041 . 2 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩
2 df-eqvrels 37993 . . . 4 EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
3 inss1 4224 . . . 4 (( RefRels ∩ SymRels ) ∩ TrRels ) ⊆ ( RefRels ∩ SymRels )
42, 3eqsstri 4012 . . 3 EqvRels ⊆ ( RefRels ∩ SymRels )
54redundss3 38037 . 2 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , ( RefRels ∩ SymRels )⟩ → {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , EqvRels ⟩)
61, 5ax-mp 5 1 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , EqvRels ⟩
Colors of variables: wff setvar class
Syntax hints:  {crab 3427  cin 3943  wss 3944   I cid 5569  dom cdm 5672  cres 5674   Rels crels 37585   RefRels crefrels 37588   SymRels csymrels 37594   TrRels ctrrels 37597   EqvRels ceqvrels 37599   Redund wredund 37604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-rels 37894  df-ssr 37907  df-refs 37919  df-refrels 37920  df-syms 37951  df-symrels 37952  df-eqvrels 37993  df-redund 38033
This theorem is referenced by:  refrelsredund3  38043
  Copyright terms: Public domain W3C validator