| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelsredund2 | Structured version Visualization version GIF version | ||
| Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 38536) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| Ref | Expression |
|---|---|
| refrelsredund2 | ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrelsredund4 38655 | . 2 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 | |
| 2 | df-eqvrels 38607 | . . . 4 ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | |
| 3 | inss1 4217 | . . . 4 ⊢ (( RefRels ∩ SymRels ) ∩ TrRels ) ⊆ ( RefRels ∩ SymRels ) | |
| 4 | 2, 3 | eqsstri 4010 | . . 3 ⊢ EqvRels ⊆ ( RefRels ∩ SymRels ) |
| 5 | 4 | redundss3 38651 | . 2 ⊢ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 → {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 |
| Colors of variables: wff setvar class |
| Syntax hints: {crab 3420 ∩ cin 3930 ⊆ wss 3931 I cid 5552 dom cdm 5659 ↾ cres 5661 Rels crels 38206 RefRels crefrels 38209 SymRels csymrels 38215 TrRels ctrrels 38218 EqvRels ceqvrels 38220 Redund wredund 38225 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-rels 38508 df-ssr 38521 df-refs 38533 df-refrels 38534 df-syms 38565 df-symrels 38566 df-eqvrels 38607 df-redund 38647 |
| This theorem is referenced by: refrelsredund3 38657 |
| Copyright terms: Public domain | W3C validator |