Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelsredund2 | Structured version Visualization version GIF version |
Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 36558) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
Ref | Expression |
---|---|
refrelsredund2 | ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrelsredund4 36672 | . 2 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 | |
2 | df-eqvrels 36624 | . . . 4 ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | |
3 | inss1 4159 | . . . 4 ⊢ (( RefRels ∩ SymRels ) ∩ TrRels ) ⊆ ( RefRels ∩ SymRels ) | |
4 | 2, 3 | eqsstri 3951 | . . 3 ⊢ EqvRels ⊆ ( RefRels ∩ SymRels ) |
5 | 4 | redundss3 36668 | . 2 ⊢ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 → {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 |
Colors of variables: wff setvar class |
Syntax hints: {crab 3067 ∩ cin 3882 ⊆ wss 3883 I cid 5479 dom cdm 5580 ↾ cres 5582 Rels crels 36262 RefRels crefrels 36265 SymRels csymrels 36271 TrRels ctrrels 36274 EqvRels ceqvrels 36276 Redund wredund 36281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-rels 36530 df-ssr 36543 df-refs 36555 df-refrels 36556 df-syms 36583 df-symrels 36584 df-eqvrels 36624 df-redund 36664 |
This theorem is referenced by: refrelsredund3 36674 |
Copyright terms: Public domain | W3C validator |