Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > altgnsg | Structured version Visualization version GIF version |
Description: The alternating group (pmEven‘𝐷) is a normal subgroup of the symmetric group. (Contributed by Thierry Arnoux, 18-Sep-2023.) |
Ref | Expression |
---|---|
evpmid.1 | ⊢ 𝑆 = (SymGrp‘𝐷) |
Ref | Expression |
---|---|
altgnsg | ⊢ (𝐷 ∈ Fin → (pmEven‘𝐷) ∈ (NrmSGrp‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . . 3 ⊢ (𝐷 ∈ Fin → 𝐷 ∈ V) | |
2 | fveq2 6756 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
3 | 2 | cnveqd 5773 | . . . . 5 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡(pmSgn‘𝐷)) |
4 | 3 | imaeq1d 5957 | . . . 4 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡(pmSgn‘𝐷) “ {1})) |
5 | df-evpm 19015 | . . . 4 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
6 | fvex 6769 | . . . . . 6 ⊢ (pmSgn‘𝐷) ∈ V | |
7 | 6 | cnvex 7746 | . . . . 5 ⊢ ◡(pmSgn‘𝐷) ∈ V |
8 | 7 | imaex 7737 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ∈ V |
9 | 4, 5, 8 | fvmpt 6857 | . . 3 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
10 | 1, 9 | syl 17 | . 2 ⊢ (𝐷 ∈ Fin → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
11 | evpmid.1 | . . . 4 ⊢ 𝑆 = (SymGrp‘𝐷) | |
12 | eqid 2738 | . . . 4 ⊢ (pmSgn‘𝐷) = (pmSgn‘𝐷) | |
13 | eqid 2738 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
14 | 11, 12, 13 | psgnghm2 20698 | . . 3 ⊢ (𝐷 ∈ Fin → (pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
15 | cnring 20532 | . . . . . 6 ⊢ ℂfld ∈ Ring | |
16 | eqid 2738 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
17 | 16 | ringmgp 19704 | . . . . . 6 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
18 | 15, 17 | ax-mp 5 | . . . . 5 ⊢ (mulGrp‘ℂfld) ∈ Mnd |
19 | ax-1cn 10860 | . . . . . 6 ⊢ 1 ∈ ℂ | |
20 | prid1g 4693 | . . . . . 6 ⊢ (1 ∈ ℂ → 1 ∈ {1, -1}) | |
21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ 1 ∈ {1, -1} |
22 | neg1cn 12017 | . . . . . 6 ⊢ -1 ∈ ℂ | |
23 | prssi 4751 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ) → {1, -1} ⊆ ℂ) | |
24 | 19, 22, 23 | mp2an 688 | . . . . 5 ⊢ {1, -1} ⊆ ℂ |
25 | cnfldbas 20514 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
26 | 16, 25 | mgpbas 19641 | . . . . . 6 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
27 | cnfld1 20535 | . . . . . . 7 ⊢ 1 = (1r‘ℂfld) | |
28 | 16, 27 | ringidval 19654 | . . . . . 6 ⊢ 1 = (0g‘(mulGrp‘ℂfld)) |
29 | 13, 26, 28 | ress0g 18328 | . . . . 5 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ 1 ∈ {1, -1} ∧ {1, -1} ⊆ ℂ) → 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
30 | 18, 21, 24, 29 | mp3an 1459 | . . . 4 ⊢ 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1})) |
31 | 30 | ghmker 18775 | . . 3 ⊢ ((pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (◡(pmSgn‘𝐷) “ {1}) ∈ (NrmSGrp‘𝑆)) |
32 | 14, 31 | syl 17 | . 2 ⊢ (𝐷 ∈ Fin → (◡(pmSgn‘𝐷) “ {1}) ∈ (NrmSGrp‘𝑆)) |
33 | 10, 32 | eqeltrd 2839 | 1 ⊢ (𝐷 ∈ Fin → (pmEven‘𝐷) ∈ (NrmSGrp‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {csn 4558 {cpr 4560 ◡ccnv 5579 “ cima 5583 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℂcc 10800 1c1 10803 -cneg 11136 ↾s cress 16867 0gc0g 17067 Mndcmnd 18300 NrmSGrpcnsg 18665 GrpHom cghm 18746 SymGrpcsymg 18889 pmSgncpsgn 19012 pmEvencevpm 19013 mulGrpcmgp 19635 Ringcrg 19698 ℂfldccnfld 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-lsw 14194 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-splice 14391 df-reverse 14400 df-s2 14489 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-efmnd 18423 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-nsg 18668 df-ghm 18747 df-gim 18790 df-oppg 18865 df-symg 18890 df-pmtr 18965 df-psgn 19014 df-evpm 19015 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-cnfld 20511 |
This theorem is referenced by: cyc3genpm 31321 |
Copyright terms: Public domain | W3C validator |