Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altgnsg Structured version   Visualization version   GIF version

Theorem altgnsg 33142
Description: The alternating group (pmEven‘𝐷) is a normal subgroup of the symmetric group. (Contributed by Thierry Arnoux, 18-Sep-2023.)
Hypothesis
Ref Expression
evpmid.1 𝑆 = (SymGrp‘𝐷)
Assertion
Ref Expression
altgnsg (𝐷 ∈ Fin → (pmEven‘𝐷) ∈ (NrmSGrp‘𝑆))

Proof of Theorem altgnsg
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . . 3 (𝐷 ∈ Fin → 𝐷 ∈ V)
2 fveq2 6920 . . . . . 6 (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷))
32cnveqd 5900 . . . . 5 (𝑑 = 𝐷(pmSgn‘𝑑) = (pmSgn‘𝐷))
43imaeq1d 6088 . . . 4 (𝑑 = 𝐷 → ((pmSgn‘𝑑) “ {1}) = ((pmSgn‘𝐷) “ {1}))
5 df-evpm 19534 . . . 4 pmEven = (𝑑 ∈ V ↦ ((pmSgn‘𝑑) “ {1}))
6 fvex 6933 . . . . . 6 (pmSgn‘𝐷) ∈ V
76cnvex 7965 . . . . 5 (pmSgn‘𝐷) ∈ V
87imaex 7954 . . . 4 ((pmSgn‘𝐷) “ {1}) ∈ V
94, 5, 8fvmpt 7029 . . 3 (𝐷 ∈ V → (pmEven‘𝐷) = ((pmSgn‘𝐷) “ {1}))
101, 9syl 17 . 2 (𝐷 ∈ Fin → (pmEven‘𝐷) = ((pmSgn‘𝐷) “ {1}))
11 evpmid.1 . . . 4 𝑆 = (SymGrp‘𝐷)
12 eqid 2740 . . . 4 (pmSgn‘𝐷) = (pmSgn‘𝐷)
13 eqid 2740 . . . 4 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
1411, 12, 13psgnghm2 21622 . . 3 (𝐷 ∈ Fin → (pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
15 cnring 21426 . . . . . 6 fld ∈ Ring
16 eqid 2740 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
1716ringmgp 20266 . . . . . 6 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
1815, 17ax-mp 5 . . . . 5 (mulGrp‘ℂfld) ∈ Mnd
19 ax-1cn 11242 . . . . . 6 1 ∈ ℂ
20 prid1g 4785 . . . . . 6 (1 ∈ ℂ → 1 ∈ {1, -1})
2119, 20ax-mp 5 . . . . 5 1 ∈ {1, -1}
22 neg1cn 12407 . . . . . 6 -1 ∈ ℂ
23 prssi 4846 . . . . . 6 ((1 ∈ ℂ ∧ -1 ∈ ℂ) → {1, -1} ⊆ ℂ)
2419, 22, 23mp2an 691 . . . . 5 {1, -1} ⊆ ℂ
25 cnfldbas 21391 . . . . . . 7 ℂ = (Base‘ℂfld)
2616, 25mgpbas 20167 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
27 cnfld1 21429 . . . . . . 7 1 = (1r‘ℂfld)
2816, 27ringidval 20210 . . . . . 6 1 = (0g‘(mulGrp‘ℂfld))
2913, 26, 28ress0g 18800 . . . . 5 (((mulGrp‘ℂfld) ∈ Mnd ∧ 1 ∈ {1, -1} ∧ {1, -1} ⊆ ℂ) → 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1})))
3018, 21, 24, 29mp3an 1461 . . . 4 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1}))
3130ghmker 19282 . . 3 ((pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → ((pmSgn‘𝐷) “ {1}) ∈ (NrmSGrp‘𝑆))
3214, 31syl 17 . 2 (𝐷 ∈ Fin → ((pmSgn‘𝐷) “ {1}) ∈ (NrmSGrp‘𝑆))
3310, 32eqeltrd 2844 1 (𝐷 ∈ Fin → (pmEven‘𝐷) ∈ (NrmSGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  {csn 4648  {cpr 4650  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  1c1 11185  -cneg 11521  s cress 17287  0gc0g 17499  Mndcmnd 18772  NrmSGrpcnsg 19161   GrpHom cghm 19252  SymGrpcsymg 19410  pmSgncpsgn 19531  pmEvencevpm 19532  mulGrpcmgp 20161  Ringcrg 20260  fldccnfld 21387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-nsg 19164  df-ghm 19253  df-gim 19299  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-evpm 19534  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-drng 20753  df-cnfld 21388
This theorem is referenced by:  cyc3genpm  33145
  Copyright terms: Public domain W3C validator