Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altgnsg Structured version   Visualization version   GIF version

Theorem altgnsg 33152
Description: The alternating group (pmEven‘𝐷) is a normal subgroup of the symmetric group. (Contributed by Thierry Arnoux, 18-Sep-2023.)
Hypothesis
Ref Expression
evpmid.1 𝑆 = (SymGrp‘𝐷)
Assertion
Ref Expression
altgnsg (𝐷 ∈ Fin → (pmEven‘𝐷) ∈ (NrmSGrp‘𝑆))

Proof of Theorem altgnsg
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 elex 3499 . . 3 (𝐷 ∈ Fin → 𝐷 ∈ V)
2 fveq2 6907 . . . . . 6 (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷))
32cnveqd 5889 . . . . 5 (𝑑 = 𝐷(pmSgn‘𝑑) = (pmSgn‘𝐷))
43imaeq1d 6079 . . . 4 (𝑑 = 𝐷 → ((pmSgn‘𝑑) “ {1}) = ((pmSgn‘𝐷) “ {1}))
5 df-evpm 19525 . . . 4 pmEven = (𝑑 ∈ V ↦ ((pmSgn‘𝑑) “ {1}))
6 fvex 6920 . . . . . 6 (pmSgn‘𝐷) ∈ V
76cnvex 7948 . . . . 5 (pmSgn‘𝐷) ∈ V
87imaex 7937 . . . 4 ((pmSgn‘𝐷) “ {1}) ∈ V
94, 5, 8fvmpt 7016 . . 3 (𝐷 ∈ V → (pmEven‘𝐷) = ((pmSgn‘𝐷) “ {1}))
101, 9syl 17 . 2 (𝐷 ∈ Fin → (pmEven‘𝐷) = ((pmSgn‘𝐷) “ {1}))
11 evpmid.1 . . . 4 𝑆 = (SymGrp‘𝐷)
12 eqid 2735 . . . 4 (pmSgn‘𝐷) = (pmSgn‘𝐷)
13 eqid 2735 . . . 4 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
1411, 12, 13psgnghm2 21617 . . 3 (𝐷 ∈ Fin → (pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
15 cnring 21421 . . . . . 6 fld ∈ Ring
16 eqid 2735 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
1716ringmgp 20257 . . . . . 6 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
1815, 17ax-mp 5 . . . . 5 (mulGrp‘ℂfld) ∈ Mnd
19 ax-1cn 11211 . . . . . 6 1 ∈ ℂ
20 prid1g 4765 . . . . . 6 (1 ∈ ℂ → 1 ∈ {1, -1})
2119, 20ax-mp 5 . . . . 5 1 ∈ {1, -1}
22 neg1cn 12378 . . . . . 6 -1 ∈ ℂ
23 prssi 4826 . . . . . 6 ((1 ∈ ℂ ∧ -1 ∈ ℂ) → {1, -1} ⊆ ℂ)
2419, 22, 23mp2an 692 . . . . 5 {1, -1} ⊆ ℂ
25 cnfldbas 21386 . . . . . . 7 ℂ = (Base‘ℂfld)
2616, 25mgpbas 20158 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
27 cnfld1 21424 . . . . . . 7 1 = (1r‘ℂfld)
2816, 27ringidval 20201 . . . . . 6 1 = (0g‘(mulGrp‘ℂfld))
2913, 26, 28ress0g 18788 . . . . 5 (((mulGrp‘ℂfld) ∈ Mnd ∧ 1 ∈ {1, -1} ∧ {1, -1} ⊆ ℂ) → 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1})))
3018, 21, 24, 29mp3an 1460 . . . 4 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1}))
3130ghmker 19273 . . 3 ((pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → ((pmSgn‘𝐷) “ {1}) ∈ (NrmSGrp‘𝑆))
3214, 31syl 17 . 2 (𝐷 ∈ Fin → ((pmSgn‘𝐷) “ {1}) ∈ (NrmSGrp‘𝑆))
3310, 32eqeltrd 2839 1 (𝐷 ∈ Fin → (pmEven‘𝐷) ∈ (NrmSGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  {csn 4631  {cpr 4633  ccnv 5688  cima 5692  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  1c1 11154  -cneg 11491  s cress 17274  0gc0g 17486  Mndcmnd 18760  NrmSGrpcnsg 19152   GrpHom cghm 19243  SymGrpcsymg 19401  pmSgncpsgn 19522  pmEvencevpm 19523  mulGrpcmgp 20152  Ringcrg 20251  fldccnfld 21382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-splice 14785  df-reverse 14794  df-s2 14884  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-gsum 17489  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-efmnd 18895  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-nsg 19155  df-ghm 19244  df-gim 19290  df-oppg 19377  df-symg 19402  df-pmtr 19475  df-psgn 19524  df-evpm 19525  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-drng 20748  df-cnfld 21383
This theorem is referenced by:  cyc3genpm  33155
  Copyright terms: Public domain W3C validator