![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > altgnsg | Structured version Visualization version GIF version |
Description: The alternating group (pmEven‘𝐷) is a normal subgroup of the symmetric group. (Contributed by Thierry Arnoux, 18-Sep-2023.) |
Ref | Expression |
---|---|
evpmid.1 | ⊢ 𝑆 = (SymGrp‘𝐷) |
Ref | Expression |
---|---|
altgnsg | ⊢ (𝐷 ∈ Fin → (pmEven‘𝐷) ∈ (NrmSGrp‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . . 3 ⊢ (𝐷 ∈ Fin → 𝐷 ∈ V) | |
2 | fveq2 6879 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
3 | 2 | cnveqd 5868 | . . . . 5 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡(pmSgn‘𝐷)) |
4 | 3 | imaeq1d 6049 | . . . 4 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡(pmSgn‘𝐷) “ {1})) |
5 | df-evpm 19326 | . . . 4 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
6 | fvex 6892 | . . . . . 6 ⊢ (pmSgn‘𝐷) ∈ V | |
7 | 6 | cnvex 7900 | . . . . 5 ⊢ ◡(pmSgn‘𝐷) ∈ V |
8 | 7 | imaex 7891 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ∈ V |
9 | 4, 5, 8 | fvmpt 6985 | . . 3 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
10 | 1, 9 | syl 17 | . 2 ⊢ (𝐷 ∈ Fin → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
11 | evpmid.1 | . . . 4 ⊢ 𝑆 = (SymGrp‘𝐷) | |
12 | eqid 2732 | . . . 4 ⊢ (pmSgn‘𝐷) = (pmSgn‘𝐷) | |
13 | eqid 2732 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
14 | 11, 12, 13 | psgnghm2 21069 | . . 3 ⊢ (𝐷 ∈ Fin → (pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
15 | cnring 20903 | . . . . . 6 ⊢ ℂfld ∈ Ring | |
16 | eqid 2732 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
17 | 16 | ringmgp 20022 | . . . . . 6 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
18 | 15, 17 | ax-mp 5 | . . . . 5 ⊢ (mulGrp‘ℂfld) ∈ Mnd |
19 | ax-1cn 11152 | . . . . . 6 ⊢ 1 ∈ ℂ | |
20 | prid1g 4758 | . . . . . 6 ⊢ (1 ∈ ℂ → 1 ∈ {1, -1}) | |
21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ 1 ∈ {1, -1} |
22 | neg1cn 12310 | . . . . . 6 ⊢ -1 ∈ ℂ | |
23 | prssi 4818 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ) → {1, -1} ⊆ ℂ) | |
24 | 19, 22, 23 | mp2an 690 | . . . . 5 ⊢ {1, -1} ⊆ ℂ |
25 | cnfldbas 20884 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
26 | 16, 25 | mgpbas 19954 | . . . . . 6 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
27 | cnfld1 20906 | . . . . . . 7 ⊢ 1 = (1r‘ℂfld) | |
28 | 16, 27 | ringidval 19967 | . . . . . 6 ⊢ 1 = (0g‘(mulGrp‘ℂfld)) |
29 | 13, 26, 28 | ress0g 18632 | . . . . 5 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ 1 ∈ {1, -1} ∧ {1, -1} ⊆ ℂ) → 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
30 | 18, 21, 24, 29 | mp3an 1461 | . . . 4 ⊢ 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1})) |
31 | 30 | ghmker 19086 | . . 3 ⊢ ((pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (◡(pmSgn‘𝐷) “ {1}) ∈ (NrmSGrp‘𝑆)) |
32 | 14, 31 | syl 17 | . 2 ⊢ (𝐷 ∈ Fin → (◡(pmSgn‘𝐷) “ {1}) ∈ (NrmSGrp‘𝑆)) |
33 | 10, 32 | eqeltrd 2833 | 1 ⊢ (𝐷 ∈ Fin → (pmEven‘𝐷) ∈ (NrmSGrp‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3945 {csn 4623 {cpr 4625 ◡ccnv 5669 “ cima 5673 ‘cfv 6533 (class class class)co 7394 Fincfn 8924 ℂcc 11092 1c1 11095 -cneg 11429 ↾s cress 17157 0gc0g 17369 Mndcmnd 18604 NrmSGrpcnsg 18975 GrpHom cghm 19057 SymGrpcsymg 19200 pmSgncpsgn 19323 pmEvencevpm 19324 mulGrpcmgp 19948 Ringcrg 20016 ℂfldccnfld 20880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-cnex 11150 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 ax-addf 11173 ax-mulf 11174 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4903 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7840 df-1st 7959 df-2nd 7960 df-tpos 8195 df-frecs 8250 df-wrecs 8281 df-recs 8355 df-rdg 8394 df-1o 8450 df-2o 8451 df-er 8688 df-map 8807 df-en 8925 df-dom 8926 df-sdom 8927 df-fin 8928 df-card 9918 df-pnf 11234 df-mnf 11235 df-xr 11236 df-ltxr 11237 df-le 11238 df-sub 11430 df-neg 11431 df-div 11856 df-nn 12197 df-2 12259 df-3 12260 df-4 12261 df-5 12262 df-6 12263 df-7 12264 df-8 12265 df-9 12266 df-n0 12457 df-xnn0 12529 df-z 12543 df-dec 12662 df-uz 12807 df-rp 12959 df-fz 13469 df-fzo 13612 df-seq 13951 df-exp 14012 df-hash 14275 df-word 14449 df-lsw 14497 df-concat 14505 df-s1 14530 df-substr 14575 df-pfx 14605 df-splice 14684 df-reverse 14693 df-s2 14783 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17129 df-ress 17158 df-plusg 17194 df-mulr 17195 df-starv 17196 df-tset 17200 df-ple 17201 df-ds 17203 df-unif 17204 df-0g 17371 df-gsum 17372 df-mre 17514 df-mrc 17515 df-acs 17517 df-mgm 18545 df-sgrp 18594 df-mnd 18605 df-mhm 18649 df-submnd 18650 df-efmnd 18727 df-grp 18799 df-minusg 18800 df-sbg 18801 df-subg 18977 df-nsg 18978 df-ghm 19058 df-gim 19101 df-oppg 19176 df-symg 19201 df-pmtr 19276 df-psgn 19325 df-evpm 19326 df-cmn 19616 df-abl 19617 df-mgp 19949 df-ur 19966 df-ring 20018 df-cring 20019 df-oppr 20104 df-dvdsr 20125 df-unit 20126 df-invr 20156 df-dvr 20167 df-drng 20269 df-cnfld 20881 |
This theorem is referenced by: cyc3genpm 32246 |
Copyright terms: Public domain | W3C validator |