| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnevpmb | Structured version Visualization version GIF version | ||
| Description: A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| evpmss.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| evpmss.p | ⊢ 𝑃 = (Base‘𝑆) |
| psgnevpmb.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnevpmb | ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . . . 4 ⊢ (𝐷 ∈ Fin → 𝐷 ∈ V) | |
| 2 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
| 3 | psgnevpmb.n | . . . . . . . 8 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 4 | 2, 3 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = 𝑁) |
| 5 | 4 | cnveqd 5818 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡𝑁) |
| 6 | 5 | imaeq1d 6010 | . . . . 5 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡𝑁 “ {1})) |
| 7 | df-evpm 19371 | . . . . 5 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
| 8 | 3 | fvexi 6836 | . . . . . . 7 ⊢ 𝑁 ∈ V |
| 9 | 8 | cnvex 7858 | . . . . . 6 ⊢ ◡𝑁 ∈ V |
| 10 | 9 | imaex 7847 | . . . . 5 ⊢ (◡𝑁 “ {1}) ∈ V |
| 11 | 6, 7, 10 | fvmpt 6930 | . . . 4 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡𝑁 “ {1})) |
| 12 | 1, 11 | syl 17 | . . 3 ⊢ (𝐷 ∈ Fin → (pmEven‘𝐷) = (◡𝑁 “ {1})) |
| 13 | 12 | eleq2d 2814 | . 2 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ 𝐹 ∈ (◡𝑁 “ {1}))) |
| 14 | evpmss.s | . . . 4 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 15 | eqid 2729 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 16 | 14, 3, 15 | psgnghm2 21488 | . . 3 ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 17 | evpmss.p | . . . 4 ⊢ 𝑃 = (Base‘𝑆) | |
| 18 | eqid 2729 | . . . 4 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
| 19 | 17, 18 | ghmf 19099 | . . 3 ⊢ (𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 20 | ffn 6652 | . . 3 ⊢ (𝑁:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁 Fn 𝑃) | |
| 21 | fniniseg 6994 | . . 3 ⊢ (𝑁 Fn 𝑃 → (𝐹 ∈ (◡𝑁 “ {1}) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) | |
| 22 | 16, 19, 20, 21 | 4syl 19 | . 2 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (◡𝑁 “ {1}) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
| 23 | 13, 22 | bitrd 279 | 1 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 {cpr 4579 ◡ccnv 5618 “ cima 5622 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 1c1 11010 -cneg 11348 Basecbs 17120 ↾s cress 17141 GrpHom cghm 19091 SymGrpcsymg 19248 pmSgncpsgn 19368 pmEvencevpm 19369 mulGrpcmgp 20025 ℂfldccnfld 21261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14503 df-substr 14548 df-pfx 14578 df-splice 14656 df-reverse 14665 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-efmnd 18743 df-grp 18815 df-minusg 18816 df-subg 19002 df-ghm 19092 df-gim 19138 df-oppg 19225 df-symg 19249 df-pmtr 19321 df-psgn 19370 df-evpm 19371 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-drng 20616 df-cnfld 21262 |
| This theorem is referenced by: psgnodpm 21495 psgnevpm 21496 evpmodpmf1o 21503 mdet0pr 22477 odpmco 33037 evpmid 33099 cyc3evpm 33101 |
| Copyright terms: Public domain | W3C validator |