| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnevpmb | Structured version Visualization version GIF version | ||
| Description: A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| evpmss.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| evpmss.p | ⊢ 𝑃 = (Base‘𝑆) |
| psgnevpmb.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnevpmb | ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . . . 4 ⊢ (𝐷 ∈ Fin → 𝐷 ∈ V) | |
| 2 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
| 3 | psgnevpmb.n | . . . . . . . 8 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 4 | 2, 3 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = 𝑁) |
| 5 | 4 | cnveqd 5842 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡𝑁) |
| 6 | 5 | imaeq1d 6033 | . . . . 5 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡𝑁 “ {1})) |
| 7 | df-evpm 19429 | . . . . 5 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
| 8 | 3 | fvexi 6875 | . . . . . . 7 ⊢ 𝑁 ∈ V |
| 9 | 8 | cnvex 7904 | . . . . . 6 ⊢ ◡𝑁 ∈ V |
| 10 | 9 | imaex 7893 | . . . . 5 ⊢ (◡𝑁 “ {1}) ∈ V |
| 11 | 6, 7, 10 | fvmpt 6971 | . . . 4 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡𝑁 “ {1})) |
| 12 | 1, 11 | syl 17 | . . 3 ⊢ (𝐷 ∈ Fin → (pmEven‘𝐷) = (◡𝑁 “ {1})) |
| 13 | 12 | eleq2d 2815 | . 2 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ 𝐹 ∈ (◡𝑁 “ {1}))) |
| 14 | evpmss.s | . . . 4 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 15 | eqid 2730 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 16 | 14, 3, 15 | psgnghm2 21497 | . . 3 ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 17 | evpmss.p | . . . 4 ⊢ 𝑃 = (Base‘𝑆) | |
| 18 | eqid 2730 | . . . 4 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
| 19 | 17, 18 | ghmf 19159 | . . 3 ⊢ (𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 20 | ffn 6691 | . . 3 ⊢ (𝑁:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁 Fn 𝑃) | |
| 21 | fniniseg 7035 | . . 3 ⊢ (𝑁 Fn 𝑃 → (𝐹 ∈ (◡𝑁 “ {1}) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) | |
| 22 | 16, 19, 20, 21 | 4syl 19 | . 2 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (◡𝑁 “ {1}) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
| 23 | 13, 22 | bitrd 279 | 1 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 {cpr 4594 ◡ccnv 5640 “ cima 5644 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 1c1 11076 -cneg 11413 Basecbs 17186 ↾s cress 17207 GrpHom cghm 19151 SymGrpcsymg 19306 pmSgncpsgn 19426 pmEvencevpm 19427 mulGrpcmgp 20056 ℂfldccnfld 21271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-word 14486 df-lsw 14535 df-concat 14543 df-s1 14568 df-substr 14613 df-pfx 14643 df-splice 14722 df-reverse 14731 df-s2 14821 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-gsum 17412 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-efmnd 18803 df-grp 18875 df-minusg 18876 df-subg 19062 df-ghm 19152 df-gim 19198 df-oppg 19285 df-symg 19307 df-pmtr 19379 df-psgn 19428 df-evpm 19429 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-drng 20647 df-cnfld 21272 |
| This theorem is referenced by: psgnodpm 21504 psgnevpm 21505 evpmodpmf1o 21512 mdet0pr 22486 odpmco 33050 evpmid 33112 cyc3evpm 33114 |
| Copyright terms: Public domain | W3C validator |