![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnevpmb | Structured version Visualization version GIF version |
Description: A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
evpmss.s | β’ π = (SymGrpβπ·) |
evpmss.p | β’ π = (Baseβπ) |
psgnevpmb.n | β’ π = (pmSgnβπ·) |
Ref | Expression |
---|---|
psgnevpmb | β’ (π· β Fin β (πΉ β (pmEvenβπ·) β (πΉ β π β§ (πβπΉ) = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3485 | . . . 4 β’ (π· β Fin β π· β V) | |
2 | fveq2 6881 | . . . . . . . 8 β’ (π = π· β (pmSgnβπ) = (pmSgnβπ·)) | |
3 | psgnevpmb.n | . . . . . . . 8 β’ π = (pmSgnβπ·) | |
4 | 2, 3 | eqtr4di 2782 | . . . . . . 7 β’ (π = π· β (pmSgnβπ) = π) |
5 | 4 | cnveqd 5865 | . . . . . 6 β’ (π = π· β β‘(pmSgnβπ) = β‘π) |
6 | 5 | imaeq1d 6048 | . . . . 5 β’ (π = π· β (β‘(pmSgnβπ) β {1}) = (β‘π β {1})) |
7 | df-evpm 19401 | . . . . 5 β’ pmEven = (π β V β¦ (β‘(pmSgnβπ) β {1})) | |
8 | 3 | fvexi 6895 | . . . . . . 7 β’ π β V |
9 | 8 | cnvex 7909 | . . . . . 6 β’ β‘π β V |
10 | 9 | imaex 7900 | . . . . 5 β’ (β‘π β {1}) β V |
11 | 6, 7, 10 | fvmpt 6988 | . . . 4 β’ (π· β V β (pmEvenβπ·) = (β‘π β {1})) |
12 | 1, 11 | syl 17 | . . 3 β’ (π· β Fin β (pmEvenβπ·) = (β‘π β {1})) |
13 | 12 | eleq2d 2811 | . 2 β’ (π· β Fin β (πΉ β (pmEvenβπ·) β πΉ β (β‘π β {1}))) |
14 | evpmss.s | . . . . 5 β’ π = (SymGrpβπ·) | |
15 | eqid 2724 | . . . . 5 β’ ((mulGrpββfld) βΎs {1, -1}) = ((mulGrpββfld) βΎs {1, -1}) | |
16 | 14, 3, 15 | psgnghm2 21441 | . . . 4 β’ (π· β Fin β π β (π GrpHom ((mulGrpββfld) βΎs {1, -1}))) |
17 | evpmss.p | . . . . 5 β’ π = (Baseβπ) | |
18 | eqid 2724 | . . . . 5 β’ (Baseβ((mulGrpββfld) βΎs {1, -1})) = (Baseβ((mulGrpββfld) βΎs {1, -1})) | |
19 | 17, 18 | ghmf 19134 | . . . 4 β’ (π β (π GrpHom ((mulGrpββfld) βΎs {1, -1})) β π:πβΆ(Baseβ((mulGrpββfld) βΎs {1, -1}))) |
20 | 16, 19 | syl 17 | . . 3 β’ (π· β Fin β π:πβΆ(Baseβ((mulGrpββfld) βΎs {1, -1}))) |
21 | ffn 6707 | . . 3 β’ (π:πβΆ(Baseβ((mulGrpββfld) βΎs {1, -1})) β π Fn π) | |
22 | fniniseg 7051 | . . 3 β’ (π Fn π β (πΉ β (β‘π β {1}) β (πΉ β π β§ (πβπΉ) = 1))) | |
23 | 20, 21, 22 | 3syl 18 | . 2 β’ (π· β Fin β (πΉ β (β‘π β {1}) β (πΉ β π β§ (πβπΉ) = 1))) |
24 | 13, 23 | bitrd 279 | 1 β’ (π· β Fin β (πΉ β (pmEvenβπ·) β (πΉ β π β§ (πβπΉ) = 1))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 Vcvv 3466 {csn 4620 {cpr 4622 β‘ccnv 5665 β cima 5669 Fn wfn 6528 βΆwf 6529 βcfv 6533 (class class class)co 7401 Fincfn 8934 1c1 11106 -cneg 11441 Basecbs 17142 βΎs cress 17171 GrpHom cghm 19127 SymGrpcsymg 19275 pmSgncpsgn 19398 pmEvencevpm 19399 mulGrpcmgp 20028 βfldccnfld 21227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-addf 11184 ax-mulf 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-ot 4629 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-dec 12674 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-word 14461 df-lsw 14509 df-concat 14517 df-s1 14542 df-substr 14587 df-pfx 14617 df-splice 14696 df-reverse 14705 df-s2 14795 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-starv 17210 df-tset 17214 df-ple 17215 df-ds 17217 df-unif 17218 df-0g 17385 df-gsum 17386 df-mre 17528 df-mrc 17529 df-acs 17531 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-mhm 18702 df-submnd 18703 df-efmnd 18783 df-grp 18855 df-minusg 18856 df-subg 19039 df-ghm 19128 df-gim 19173 df-oppg 19251 df-symg 19276 df-pmtr 19351 df-psgn 19400 df-evpm 19401 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-drng 20578 df-cnfld 21228 |
This theorem is referenced by: psgnodpm 21448 psgnevpm 21449 evpmodpmf1o 21456 mdet0pr 22415 odpmco 32681 evpmid 32741 cyc3evpm 32743 |
Copyright terms: Public domain | W3C validator |