Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgnevpmb | Structured version Visualization version GIF version |
Description: A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
evpmss.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
evpmss.p | ⊢ 𝑃 = (Base‘𝑆) |
psgnevpmb.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnevpmb | ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3449 | . . . 4 ⊢ (𝐷 ∈ Fin → 𝐷 ∈ V) | |
2 | fveq2 6771 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
3 | psgnevpmb.n | . . . . . . . 8 ⊢ 𝑁 = (pmSgn‘𝐷) | |
4 | 2, 3 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = 𝑁) |
5 | 4 | cnveqd 5783 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡𝑁) |
6 | 5 | imaeq1d 5967 | . . . . 5 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡𝑁 “ {1})) |
7 | df-evpm 19098 | . . . . 5 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
8 | 3 | fvexi 6785 | . . . . . . 7 ⊢ 𝑁 ∈ V |
9 | 8 | cnvex 7766 | . . . . . 6 ⊢ ◡𝑁 ∈ V |
10 | 9 | imaex 7757 | . . . . 5 ⊢ (◡𝑁 “ {1}) ∈ V |
11 | 6, 7, 10 | fvmpt 6872 | . . . 4 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡𝑁 “ {1})) |
12 | 1, 11 | syl 17 | . . 3 ⊢ (𝐷 ∈ Fin → (pmEven‘𝐷) = (◡𝑁 “ {1})) |
13 | 12 | eleq2d 2826 | . 2 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ 𝐹 ∈ (◡𝑁 “ {1}))) |
14 | evpmss.s | . . . . 5 ⊢ 𝑆 = (SymGrp‘𝐷) | |
15 | eqid 2740 | . . . . 5 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
16 | 14, 3, 15 | psgnghm2 20784 | . . . 4 ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
17 | evpmss.p | . . . . 5 ⊢ 𝑃 = (Base‘𝑆) | |
18 | eqid 2740 | . . . . 5 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
19 | 17, 18 | ghmf 18836 | . . . 4 ⊢ (𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
20 | 16, 19 | syl 17 | . . 3 ⊢ (𝐷 ∈ Fin → 𝑁:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
21 | ffn 6598 | . . 3 ⊢ (𝑁:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁 Fn 𝑃) | |
22 | fniniseg 6934 | . . 3 ⊢ (𝑁 Fn 𝑃 → (𝐹 ∈ (◡𝑁 “ {1}) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) | |
23 | 20, 21, 22 | 3syl 18 | . 2 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (◡𝑁 “ {1}) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
24 | 13, 23 | bitrd 278 | 1 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 {csn 4567 {cpr 4569 ◡ccnv 5589 “ cima 5593 Fn wfn 6427 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 Fincfn 8716 1c1 10873 -cneg 11206 Basecbs 16910 ↾s cress 16939 GrpHom cghm 18829 SymGrpcsymg 18972 pmSgncpsgn 19095 pmEvencevpm 19096 mulGrpcmgp 19718 ℂfldccnfld 20595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-addf 10951 ax-mulf 10952 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-xor 1507 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-ot 4576 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-tpos 8033 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12437 df-uz 12582 df-rp 12730 df-fz 13239 df-fzo 13382 df-seq 13720 df-exp 13781 df-hash 14043 df-word 14216 df-lsw 14264 df-concat 14272 df-s1 14299 df-substr 14352 df-pfx 14382 df-splice 14461 df-reverse 14470 df-s2 14559 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-0g 17150 df-gsum 17151 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mhm 18428 df-submnd 18429 df-efmnd 18506 df-grp 18578 df-minusg 18579 df-subg 18750 df-ghm 18830 df-gim 18873 df-oppg 18948 df-symg 18973 df-pmtr 19048 df-psgn 19097 df-evpm 19098 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-ring 19783 df-cring 19784 df-oppr 19860 df-dvdsr 19881 df-unit 19882 df-invr 19912 df-dvr 19923 df-drng 19991 df-cnfld 20596 |
This theorem is referenced by: psgnodpm 20791 psgnevpm 20792 evpmodpmf1o 20799 mdet0pr 21739 odpmco 31351 evpmid 31411 cyc3evpm 31413 |
Copyright terms: Public domain | W3C validator |