Proof of Theorem psgnunilem1
Step | Hyp | Ref
| Expression |
1 | | psgnunilem1.q |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ 𝑇) |
2 | | eqid 2738 |
. . . . . . . . 9
⊢
(pmTrsp‘𝐷) =
(pmTrsp‘𝐷) |
3 | | psgnunilem1.t |
. . . . . . . . 9
⊢ 𝑇 = ran (pmTrsp‘𝐷) |
4 | 2, 3 | pmtrfinv 19069 |
. . . . . . . 8
⊢ (𝑄 ∈ 𝑇 → (𝑄 ∘ 𝑄) = ( I ↾ 𝐷)) |
5 | 1, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑄 ∘ 𝑄) = ( I ↾ 𝐷)) |
6 | | coeq1 5766 |
. . . . . . . 8
⊢ (𝑃 = 𝑄 → (𝑃 ∘ 𝑄) = (𝑄 ∘ 𝑄)) |
7 | 6 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑃 = 𝑄 → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ↔ (𝑄 ∘ 𝑄) = ( I ↾ 𝐷))) |
8 | 5, 7 | syl5ibrcom 246 |
. . . . . 6
⊢ (𝜑 → (𝑃 = 𝑄 → (𝑃 ∘ 𝑄) = ( I ↾ 𝐷))) |
9 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝑃 = 𝑄 → (𝑃 ∘ 𝑄) = ( I ↾ 𝐷))) |
10 | 9 | imp 407 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 = 𝑄) → (𝑃 ∘ 𝑄) = ( I ↾ 𝐷)) |
11 | 10 | orcd 870 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 = 𝑄) → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) |
12 | | psgnunilem1.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ 𝑇) |
13 | 2, 3 | pmtrfcnv 19072 |
. . . . . . . . . 10
⊢ (𝑃 ∈ 𝑇 → ◡𝑃 = 𝑃) |
14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ◡𝑃 = 𝑃) |
15 | 14 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 = ◡𝑃) |
16 | 15 | coeq2d 5771 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 ∘ 𝑄) ∘ 𝑃) = ((𝑃 ∘ 𝑄) ∘ ◡𝑃)) |
17 | 2, 3 | pmtrff1o 19071 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝑇 → 𝑃:𝐷–1-1-onto→𝐷) |
18 | 12, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃:𝐷–1-1-onto→𝐷) |
19 | 2, 3 | pmtrfconj 19074 |
. . . . . . . 8
⊢ ((𝑄 ∈ 𝑇 ∧ 𝑃:𝐷–1-1-onto→𝐷) → ((𝑃 ∘ 𝑄) ∘ ◡𝑃) ∈ 𝑇) |
20 | 1, 18, 19 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 ∘ 𝑄) ∘ ◡𝑃) ∈ 𝑇) |
21 | 16, 20 | eqeltrd 2839 |
. . . . . 6
⊢ (𝜑 → ((𝑃 ∘ 𝑄) ∘ 𝑃) ∈ 𝑇) |
22 | 21 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∘ 𝑄) ∘ 𝑃) ∈ 𝑇) |
23 | 12 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝑇) |
24 | | coass 6169 |
. . . . . . 7
⊢ (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃) = ((𝑃 ∘ 𝑄) ∘ (𝑃 ∘ 𝑃)) |
25 | 2, 3 | pmtrfinv 19069 |
. . . . . . . . . 10
⊢ (𝑃 ∈ 𝑇 → (𝑃 ∘ 𝑃) = ( I ↾ 𝐷)) |
26 | 12, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 ∘ 𝑃) = ( I ↾ 𝐷)) |
27 | 26 | coeq2d 5771 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 ∘ 𝑄) ∘ (𝑃 ∘ 𝑃)) = ((𝑃 ∘ 𝑄) ∘ ( I ↾ 𝐷))) |
28 | | f1of 6716 |
. . . . . . . . . . 11
⊢ (𝑃:𝐷–1-1-onto→𝐷 → 𝑃:𝐷⟶𝐷) |
29 | 18, 28 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃:𝐷⟶𝐷) |
30 | 2, 3 | pmtrff1o 19071 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ 𝑇 → 𝑄:𝐷–1-1-onto→𝐷) |
31 | 1, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄:𝐷–1-1-onto→𝐷) |
32 | | f1of 6716 |
. . . . . . . . . . 11
⊢ (𝑄:𝐷–1-1-onto→𝐷 → 𝑄:𝐷⟶𝐷) |
33 | 31, 32 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄:𝐷⟶𝐷) |
34 | | fco 6624 |
. . . . . . . . . 10
⊢ ((𝑃:𝐷⟶𝐷 ∧ 𝑄:𝐷⟶𝐷) → (𝑃 ∘ 𝑄):𝐷⟶𝐷) |
35 | 29, 33, 34 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 ∘ 𝑄):𝐷⟶𝐷) |
36 | | fcoi1 6648 |
. . . . . . . . 9
⊢ ((𝑃 ∘ 𝑄):𝐷⟶𝐷 → ((𝑃 ∘ 𝑄) ∘ ( I ↾ 𝐷)) = (𝑃 ∘ 𝑄)) |
37 | 35, 36 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 ∘ 𝑄) ∘ ( I ↾ 𝐷)) = (𝑃 ∘ 𝑄)) |
38 | 27, 37 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 ∘ 𝑄) ∘ (𝑃 ∘ 𝑃)) = (𝑃 ∘ 𝑄)) |
39 | 24, 38 | eqtr2id 2791 |
. . . . . 6
⊢ (𝜑 → (𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃)) |
40 | 39 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃)) |
41 | | psgnunilem1.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ dom (𝑃 ∖ I )) |
42 | 41 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → 𝐴 ∈ dom (𝑃 ∖ I )) |
43 | 18 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝑃:𝐷–1-1-onto→𝐷) |
44 | 31 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝑄:𝐷–1-1-onto→𝐷) |
45 | 2, 3 | pmtrfb 19073 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ 𝑇 ↔ (𝐷 ∈ V ∧ 𝑃:𝐷–1-1-onto→𝐷 ∧ dom (𝑃 ∖ I ) ≈
2o)) |
46 | 45 | simp3bi 1146 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ 𝑇 → dom (𝑃 ∖ I ) ≈
2o) |
47 | 12, 46 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (𝑃 ∖ I ) ≈
2o) |
48 | 47 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑃 ∖ I ) ≈
2o) |
49 | | 2onn 8472 |
. . . . . . . . . . . . . . 15
⊢
2o ∈ ω |
50 | | nnfi 8950 |
. . . . . . . . . . . . . . 15
⊢
(2o ∈ ω → 2o ∈
Fin) |
51 | 49, 50 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
2o ∈ Fin |
52 | 2, 3 | pmtrfb 19073 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑄 ∈ 𝑇 ↔ (𝐷 ∈ V ∧ 𝑄:𝐷–1-1-onto→𝐷 ∧ dom (𝑄 ∖ I ) ≈
2o)) |
53 | 52 | simp3bi 1146 |
. . . . . . . . . . . . . . . 16
⊢ (𝑄 ∈ 𝑇 → dom (𝑄 ∖ I ) ≈
2o) |
54 | 1, 53 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom (𝑄 ∖ I ) ≈
2o) |
55 | | enfi 8973 |
. . . . . . . . . . . . . . 15
⊢ (dom
(𝑄 ∖ I ) ≈
2o → (dom (𝑄 ∖ I ) ∈ Fin ↔ 2o
∈ Fin)) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (dom (𝑄 ∖ I ) ∈ Fin ↔ 2o
∈ Fin)) |
57 | 51, 56 | mpbiri 257 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom (𝑄 ∖ I ) ∈ Fin) |
58 | 57 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑄 ∖ I ) ∈
Fin) |
59 | 41 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝐴 ∈ dom (𝑃 ∖ I )) |
60 | | en2eleq 9764 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ dom (𝑃 ∖ I ) ∧ dom (𝑃 ∖ I ) ≈ 2o) →
dom (𝑃 ∖ I ) = {𝐴, ∪
(dom (𝑃 ∖ I ) ∖
{𝐴})}) |
61 | 59, 48, 60 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑃 ∖ I ) = {𝐴, ∪
(dom (𝑃 ∖ I ) ∖
{𝐴})}) |
62 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝐴 ∈ dom (𝑄 ∖ I )) |
63 | | f1ofn 6717 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃:𝐷–1-1-onto→𝐷 → 𝑃 Fn 𝐷) |
64 | 18, 63 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 Fn 𝐷) |
65 | 64 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝑃 Fn 𝐷) |
66 | | fimass 6621 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃:𝐷⟶𝐷 → (𝑃 “ dom (𝑄 ∖ I )) ⊆ 𝐷) |
67 | 29, 66 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑃 “ dom (𝑄 ∖ I )) ⊆ 𝐷) |
68 | 67 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → (𝑃 “ dom (𝑄 ∖ I )) ⊆ 𝐷) |
69 | | simprr 770 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I ))) |
70 | | fnfvima 7109 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 Fn 𝐷 ∧ (𝑃 “ dom (𝑄 ∖ I )) ⊆ 𝐷 ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I ))) → (𝑃‘𝐴) ∈ (𝑃 “ (𝑃 “ dom (𝑄 ∖ I )))) |
71 | 65, 68, 69, 70 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → (𝑃‘𝐴) ∈ (𝑃 “ (𝑃 “ dom (𝑄 ∖ I )))) |
72 | | difss 4066 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃 ∖ I ) ⊆ 𝑃 |
73 | | dmss 5811 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑃 ∖ I ) ⊆ 𝑃 → dom (𝑃 ∖ I ) ⊆ dom 𝑃) |
74 | 72, 73 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ dom
(𝑃 ∖ I ) ⊆ dom
𝑃 |
75 | | f1odm 6720 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃:𝐷–1-1-onto→𝐷 → dom 𝑃 = 𝐷) |
76 | 18, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → dom 𝑃 = 𝐷) |
77 | 74, 76 | sseqtrid 3973 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → dom (𝑃 ∖ I ) ⊆ 𝐷) |
78 | 77, 41 | sseldd 3922 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈ 𝐷) |
79 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ dom
(𝑃 ∖ I ) = dom (𝑃 ∖ I ) |
80 | 2, 3, 79 | pmtrffv 19067 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ 𝑇 ∧ 𝐴 ∈ 𝐷) → (𝑃‘𝐴) = if(𝐴 ∈ dom (𝑃 ∖ I ), ∪
(dom (𝑃 ∖ I ) ∖
{𝐴}), 𝐴)) |
81 | 12, 78, 80 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑃‘𝐴) = if(𝐴 ∈ dom (𝑃 ∖ I ), ∪
(dom (𝑃 ∖ I ) ∖
{𝐴}), 𝐴)) |
82 | 41 | iftrued 4467 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝐴 ∈ dom (𝑃 ∖ I ), ∪
(dom (𝑃 ∖ I ) ∖
{𝐴}), 𝐴) = ∪ (dom (𝑃 ∖ I ) ∖ {𝐴})) |
83 | 81, 82 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑃‘𝐴) = ∪ (dom (𝑃 ∖ I ) ∖ {𝐴})) |
84 | 83 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → (𝑃‘𝐴) = ∪ (dom (𝑃 ∖ I ) ∖ {𝐴})) |
85 | | imaco 6155 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∘ 𝑃) “ dom (𝑄 ∖ I )) = (𝑃 “ (𝑃 “ dom (𝑄 ∖ I ))) |
86 | 26 | imaeq1d 5968 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑃 ∘ 𝑃) “ dom (𝑄 ∖ I )) = (( I ↾ 𝐷) “ dom (𝑄 ∖ I ))) |
87 | | difss 4066 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑄 ∖ I ) ⊆ 𝑄 |
88 | | dmss 5811 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄) |
89 | 87, 88 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ dom
(𝑄 ∖ I ) ⊆ dom
𝑄 |
90 | | f1odm 6720 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑄:𝐷–1-1-onto→𝐷 → dom 𝑄 = 𝐷) |
91 | 89, 90 | sseqtrid 3973 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑄:𝐷–1-1-onto→𝐷 → dom (𝑄 ∖ I ) ⊆ 𝐷) |
92 | 31, 91 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → dom (𝑄 ∖ I ) ⊆ 𝐷) |
93 | | resiima 5984 |
. . . . . . . . . . . . . . . . . . 19
⊢ (dom
(𝑄 ∖ I ) ⊆
𝐷 → (( I ↾ 𝐷) “ dom (𝑄 ∖ I )) = dom (𝑄 ∖ I )) |
94 | 92, 93 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (( I ↾ 𝐷) “ dom (𝑄 ∖ I )) = dom (𝑄 ∖ I )) |
95 | 86, 94 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑃 ∘ 𝑃) “ dom (𝑄 ∖ I )) = dom (𝑄 ∖ I )) |
96 | 85, 95 | eqtr3id 2792 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑃 “ (𝑃 “ dom (𝑄 ∖ I ))) = dom (𝑄 ∖ I )) |
97 | 96 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → (𝑃 “ (𝑃 “ dom (𝑄 ∖ I ))) = dom (𝑄 ∖ I )) |
98 | 71, 84, 97 | 3eltr3d 2853 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → ∪ (dom (𝑃 ∖ I ) ∖ {𝐴}) ∈ dom (𝑄 ∖ I )) |
99 | 62, 98 | prssd 4755 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → {𝐴, ∪ (dom (𝑃 ∖ I ) ∖ {𝐴})} ⊆ dom (𝑄 ∖ I )) |
100 | 61, 99 | eqsstrd 3959 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑃 ∖ I ) ⊆ dom (𝑄 ∖ I )) |
101 | 54 | ensymd 8791 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2o ≈ dom
(𝑄 ∖ I
)) |
102 | | entr 8792 |
. . . . . . . . . . . . . 14
⊢ ((dom
(𝑃 ∖ I ) ≈
2o ∧ 2o ≈ dom (𝑄 ∖ I )) → dom (𝑃 ∖ I ) ≈ dom (𝑄 ∖ I )) |
103 | 47, 101, 102 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom (𝑃 ∖ I ) ≈ dom (𝑄 ∖ I )) |
104 | 103 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑃 ∖ I ) ≈ dom (𝑄 ∖ I )) |
105 | | fisseneq 9034 |
. . . . . . . . . . . 12
⊢ ((dom
(𝑄 ∖ I ) ∈ Fin
∧ dom (𝑃 ∖ I )
⊆ dom (𝑄 ∖ I )
∧ dom (𝑃 ∖ I )
≈ dom (𝑄 ∖ I ))
→ dom (𝑃 ∖ I ) =
dom (𝑄 ∖ I
)) |
106 | 58, 100, 104, 105 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑃 ∖ I ) = dom (𝑄 ∖ I )) |
107 | 106 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑄 ∖ I ) = dom (𝑃 ∖ I )) |
108 | | f1otrspeq 19055 |
. . . . . . . . . 10
⊢ (((𝑃:𝐷–1-1-onto→𝐷 ∧ 𝑄:𝐷–1-1-onto→𝐷) ∧ (dom (𝑃 ∖ I ) ≈ 2o ∧ dom
(𝑄 ∖ I ) = dom (𝑃 ∖ I ))) → 𝑃 = 𝑄) |
109 | 43, 44, 48, 107, 108 | syl22anc 836 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝑃 = 𝑄) |
110 | 109 | expr 457 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )) → 𝑃 = 𝑄)) |
111 | 110 | necon3ad 2956 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝑃 ≠ 𝑄 → ¬ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) |
112 | 111 | imp 407 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → ¬ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I ))) |
113 | 16 | difeq1d 4056 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ) = (((𝑃 ∘ 𝑄) ∘ ◡𝑃) ∖ I )) |
114 | 113 | dmeqd 5814 |
. . . . . . . . 9
⊢ (𝜑 → dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ) = dom (((𝑃 ∘ 𝑄) ∘ ◡𝑃) ∖ I )) |
115 | | f1omvdconj 19054 |
. . . . . . . . . 10
⊢ ((𝑄:𝐷⟶𝐷 ∧ 𝑃:𝐷–1-1-onto→𝐷) → dom (((𝑃 ∘ 𝑄) ∘ ◡𝑃) ∖ I ) = (𝑃 “ dom (𝑄 ∖ I ))) |
116 | 33, 18, 115 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → dom (((𝑃 ∘ 𝑄) ∘ ◡𝑃) ∖ I ) = (𝑃 “ dom (𝑄 ∖ I ))) |
117 | 114, 116 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ) = (𝑃 “ dom (𝑄 ∖ I ))) |
118 | 117 | eleq2d 2824 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ) ↔ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) |
119 | 118 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → (𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ) ↔ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) |
120 | 112, 119 | mtbird 325 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → ¬ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I )) |
121 | | coeq1 5766 |
. . . . . . . 8
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → (𝑟 ∘ 𝑠) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑠)) |
122 | 121 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ↔ (𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑠))) |
123 | | difeq1 4050 |
. . . . . . . . . 10
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → (𝑟 ∖ I ) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I )) |
124 | 123 | dmeqd 5814 |
. . . . . . . . 9
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → dom (𝑟 ∖ I ) = dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I )) |
125 | 124 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → (𝐴 ∈ dom (𝑟 ∖ I ) ↔ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ))) |
126 | 125 | notbid 318 |
. . . . . . 7
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → (¬ 𝐴 ∈ dom (𝑟 ∖ I ) ↔ ¬ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ))) |
127 | 122, 126 | 3anbi13d 1437 |
. . . . . 6
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → (((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )) ↔ ((𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I )))) |
128 | | coeq2 5767 |
. . . . . . . 8
⊢ (𝑠 = 𝑃 → (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑠) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃)) |
129 | 128 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑠 = 𝑃 → ((𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑠) ↔ (𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃))) |
130 | | difeq1 4050 |
. . . . . . . . 9
⊢ (𝑠 = 𝑃 → (𝑠 ∖ I ) = (𝑃 ∖ I )) |
131 | 130 | dmeqd 5814 |
. . . . . . . 8
⊢ (𝑠 = 𝑃 → dom (𝑠 ∖ I ) = dom (𝑃 ∖ I )) |
132 | 131 | eleq2d 2824 |
. . . . . . 7
⊢ (𝑠 = 𝑃 → (𝐴 ∈ dom (𝑠 ∖ I ) ↔ 𝐴 ∈ dom (𝑃 ∖ I ))) |
133 | 129, 132 | 3anbi12d 1436 |
. . . . . 6
⊢ (𝑠 = 𝑃 → (((𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I )) ↔ ((𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃) ∧ 𝐴 ∈ dom (𝑃 ∖ I ) ∧ ¬ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I )))) |
134 | 127, 133 | rspc2ev 3572 |
. . . . 5
⊢ ((((𝑃 ∘ 𝑄) ∘ 𝑃) ∈ 𝑇 ∧ 𝑃 ∈ 𝑇 ∧ ((𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃) ∧ 𝐴 ∈ dom (𝑃 ∖ I ) ∧ ¬ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ))) → ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I ))) |
135 | 22, 23, 40, 42, 120, 134 | syl113anc 1381 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I ))) |
136 | 135 | olcd 871 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) |
137 | 11, 136 | pm2.61dane 3032 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) |
138 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → 𝑄 ∈ 𝑇) |
139 | | coass 6169 |
. . . . . . 7
⊢ ((𝑄 ∘ 𝑃) ∘ 𝑄) = (𝑄 ∘ (𝑃 ∘ 𝑄)) |
140 | 2, 3 | pmtrfcnv 19072 |
. . . . . . . . . 10
⊢ (𝑄 ∈ 𝑇 → ◡𝑄 = 𝑄) |
141 | 1, 140 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ◡𝑄 = 𝑄) |
142 | 141 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 = ◡𝑄) |
143 | 142 | coeq2d 5771 |
. . . . . . 7
⊢ (𝜑 → ((𝑄 ∘ 𝑃) ∘ 𝑄) = ((𝑄 ∘ 𝑃) ∘ ◡𝑄)) |
144 | 139, 143 | eqtr3id 2792 |
. . . . . 6
⊢ (𝜑 → (𝑄 ∘ (𝑃 ∘ 𝑄)) = ((𝑄 ∘ 𝑃) ∘ ◡𝑄)) |
145 | 2, 3 | pmtrfconj 19074 |
. . . . . . 7
⊢ ((𝑃 ∈ 𝑇 ∧ 𝑄:𝐷–1-1-onto→𝐷) → ((𝑄 ∘ 𝑃) ∘ ◡𝑄) ∈ 𝑇) |
146 | 12, 31, 145 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((𝑄 ∘ 𝑃) ∘ ◡𝑄) ∈ 𝑇) |
147 | 144, 146 | eqeltrd 2839 |
. . . . 5
⊢ (𝜑 → (𝑄 ∘ (𝑃 ∘ 𝑄)) ∈ 𝑇) |
148 | 147 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝑄 ∘ (𝑃 ∘ 𝑄)) ∈ 𝑇) |
149 | 5 | coeq1d 5770 |
. . . . . . 7
⊢ (𝜑 → ((𝑄 ∘ 𝑄) ∘ (𝑃 ∘ 𝑄)) = (( I ↾ 𝐷) ∘ (𝑃 ∘ 𝑄))) |
150 | | fcoi2 6649 |
. . . . . . . 8
⊢ ((𝑃 ∘ 𝑄):𝐷⟶𝐷 → (( I ↾ 𝐷) ∘ (𝑃 ∘ 𝑄)) = (𝑃 ∘ 𝑄)) |
151 | 35, 150 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (( I ↾ 𝐷) ∘ (𝑃 ∘ 𝑄)) = (𝑃 ∘ 𝑄)) |
152 | 149, 151 | eqtr2d 2779 |
. . . . . 6
⊢ (𝜑 → (𝑃 ∘ 𝑄) = ((𝑄 ∘ 𝑄) ∘ (𝑃 ∘ 𝑄))) |
153 | | coass 6169 |
. . . . . 6
⊢ ((𝑄 ∘ 𝑄) ∘ (𝑃 ∘ 𝑄)) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄))) |
154 | 152, 153 | eqtrdi 2794 |
. . . . 5
⊢ (𝜑 → (𝑃 ∘ 𝑄) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄)))) |
155 | 154 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝑃 ∘ 𝑄) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄)))) |
156 | | f1ofn 6717 |
. . . . . . . . . 10
⊢ (𝑄:𝐷–1-1-onto→𝐷 → 𝑄 Fn 𝐷) |
157 | 31, 156 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 Fn 𝐷) |
158 | | fnelnfp 7049 |
. . . . . . . . 9
⊢ ((𝑄 Fn 𝐷 ∧ 𝐴 ∈ 𝐷) → (𝐴 ∈ dom (𝑄 ∖ I ) ↔ (𝑄‘𝐴) ≠ 𝐴)) |
159 | 157, 78, 158 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∈ dom (𝑄 ∖ I ) ↔ (𝑄‘𝐴) ≠ 𝐴)) |
160 | 159 | necon2bbid 2987 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘𝐴) = 𝐴 ↔ ¬ 𝐴 ∈ dom (𝑄 ∖ I ))) |
161 | 160 | biimpar 478 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝑄‘𝐴) = 𝐴) |
162 | | fnfvima 7109 |
. . . . . . . 8
⊢ ((𝑄 Fn 𝐷 ∧ dom (𝑃 ∖ I ) ⊆ 𝐷 ∧ 𝐴 ∈ dom (𝑃 ∖ I )) → (𝑄‘𝐴) ∈ (𝑄 “ dom (𝑃 ∖ I ))) |
163 | 157, 77, 41, 162 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝐴) ∈ (𝑄 “ dom (𝑃 ∖ I ))) |
164 | 163 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝑄‘𝐴) ∈ (𝑄 “ dom (𝑃 ∖ I ))) |
165 | 161, 164 | eqeltrrd 2840 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → 𝐴 ∈ (𝑄 “ dom (𝑃 ∖ I ))) |
166 | 144 | difeq1d 4056 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ) = (((𝑄 ∘ 𝑃) ∘ ◡𝑄) ∖ I )) |
167 | 166 | dmeqd 5814 |
. . . . . . 7
⊢ (𝜑 → dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ) = dom (((𝑄 ∘ 𝑃) ∘ ◡𝑄) ∖ I )) |
168 | | f1omvdconj 19054 |
. . . . . . . 8
⊢ ((𝑃:𝐷⟶𝐷 ∧ 𝑄:𝐷–1-1-onto→𝐷) → dom (((𝑄 ∘ 𝑃) ∘ ◡𝑄) ∖ I ) = (𝑄 “ dom (𝑃 ∖ I ))) |
169 | 29, 31, 168 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → dom (((𝑄 ∘ 𝑃) ∘ ◡𝑄) ∖ I ) = (𝑄 “ dom (𝑃 ∖ I ))) |
170 | 167, 169 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ) = (𝑄 “ dom (𝑃 ∖ I ))) |
171 | 170 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ) = (𝑄 “ dom (𝑃 ∖ I ))) |
172 | 165, 171 | eleqtrrd 2842 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → 𝐴 ∈ dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I )) |
173 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → ¬ 𝐴 ∈ dom (𝑄 ∖ I )) |
174 | | coeq1 5766 |
. . . . . . 7
⊢ (𝑟 = 𝑄 → (𝑟 ∘ 𝑠) = (𝑄 ∘ 𝑠)) |
175 | 174 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑟 = 𝑄 → ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ↔ (𝑃 ∘ 𝑄) = (𝑄 ∘ 𝑠))) |
176 | | difeq1 4050 |
. . . . . . . . 9
⊢ (𝑟 = 𝑄 → (𝑟 ∖ I ) = (𝑄 ∖ I )) |
177 | 176 | dmeqd 5814 |
. . . . . . . 8
⊢ (𝑟 = 𝑄 → dom (𝑟 ∖ I ) = dom (𝑄 ∖ I )) |
178 | 177 | eleq2d 2824 |
. . . . . . 7
⊢ (𝑟 = 𝑄 → (𝐴 ∈ dom (𝑟 ∖ I ) ↔ 𝐴 ∈ dom (𝑄 ∖ I ))) |
179 | 178 | notbid 318 |
. . . . . 6
⊢ (𝑟 = 𝑄 → (¬ 𝐴 ∈ dom (𝑟 ∖ I ) ↔ ¬ 𝐴 ∈ dom (𝑄 ∖ I ))) |
180 | 175, 179 | 3anbi13d 1437 |
. . . . 5
⊢ (𝑟 = 𝑄 → (((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )) ↔ ((𝑃 ∘ 𝑄) = (𝑄 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )))) |
181 | | coeq2 5767 |
. . . . . . 7
⊢ (𝑠 = (𝑄 ∘ (𝑃 ∘ 𝑄)) → (𝑄 ∘ 𝑠) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄)))) |
182 | 181 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑠 = (𝑄 ∘ (𝑃 ∘ 𝑄)) → ((𝑃 ∘ 𝑄) = (𝑄 ∘ 𝑠) ↔ (𝑃 ∘ 𝑄) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄))))) |
183 | | difeq1 4050 |
. . . . . . . 8
⊢ (𝑠 = (𝑄 ∘ (𝑃 ∘ 𝑄)) → (𝑠 ∖ I ) = ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I )) |
184 | 183 | dmeqd 5814 |
. . . . . . 7
⊢ (𝑠 = (𝑄 ∘ (𝑃 ∘ 𝑄)) → dom (𝑠 ∖ I ) = dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I )) |
185 | 184 | eleq2d 2824 |
. . . . . 6
⊢ (𝑠 = (𝑄 ∘ (𝑃 ∘ 𝑄)) → (𝐴 ∈ dom (𝑠 ∖ I ) ↔ 𝐴 ∈ dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ))) |
186 | 182, 185 | 3anbi12d 1436 |
. . . . 5
⊢ (𝑠 = (𝑄 ∘ (𝑃 ∘ 𝑄)) → (((𝑃 ∘ 𝑄) = (𝑄 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) ↔ ((𝑃 ∘ 𝑄) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄))) ∧ 𝐴 ∈ dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )))) |
187 | 180, 186 | rspc2ev 3572 |
. . . 4
⊢ ((𝑄 ∈ 𝑇 ∧ (𝑄 ∘ (𝑃 ∘ 𝑄)) ∈ 𝑇 ∧ ((𝑃 ∘ 𝑄) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄))) ∧ 𝐴 ∈ dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I ))) → ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I ))) |
188 | 138, 148,
155, 172, 173, 187 | syl113anc 1381 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I ))) |
189 | 188 | olcd 871 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) |
190 | 137, 189 | pm2.61dan 810 |
1
⊢ (𝜑 → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) |