Proof of Theorem psgnunilem1
| Step | Hyp | Ref
| Expression |
| 1 | | psgnunilem1.q |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ 𝑇) |
| 2 | | eqid 2736 |
. . . . . . . . 9
⊢
(pmTrsp‘𝐷) =
(pmTrsp‘𝐷) |
| 3 | | psgnunilem1.t |
. . . . . . . . 9
⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| 4 | 2, 3 | pmtrfinv 19447 |
. . . . . . . 8
⊢ (𝑄 ∈ 𝑇 → (𝑄 ∘ 𝑄) = ( I ↾ 𝐷)) |
| 5 | 1, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑄 ∘ 𝑄) = ( I ↾ 𝐷)) |
| 6 | | coeq1 5842 |
. . . . . . . 8
⊢ (𝑃 = 𝑄 → (𝑃 ∘ 𝑄) = (𝑄 ∘ 𝑄)) |
| 7 | 6 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝑃 = 𝑄 → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ↔ (𝑄 ∘ 𝑄) = ( I ↾ 𝐷))) |
| 8 | 5, 7 | syl5ibrcom 247 |
. . . . . 6
⊢ (𝜑 → (𝑃 = 𝑄 → (𝑃 ∘ 𝑄) = ( I ↾ 𝐷))) |
| 9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝑃 = 𝑄 → (𝑃 ∘ 𝑄) = ( I ↾ 𝐷))) |
| 10 | 9 | imp 406 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 = 𝑄) → (𝑃 ∘ 𝑄) = ( I ↾ 𝐷)) |
| 11 | 10 | orcd 873 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 = 𝑄) → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) |
| 12 | | psgnunilem1.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ 𝑇) |
| 13 | 2, 3 | pmtrfcnv 19450 |
. . . . . . . . . 10
⊢ (𝑃 ∈ 𝑇 → ◡𝑃 = 𝑃) |
| 14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ◡𝑃 = 𝑃) |
| 15 | 14 | eqcomd 2742 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 = ◡𝑃) |
| 16 | 15 | coeq2d 5847 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 ∘ 𝑄) ∘ 𝑃) = ((𝑃 ∘ 𝑄) ∘ ◡𝑃)) |
| 17 | 2, 3 | pmtrff1o 19449 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝑇 → 𝑃:𝐷–1-1-onto→𝐷) |
| 18 | 12, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃:𝐷–1-1-onto→𝐷) |
| 19 | 2, 3 | pmtrfconj 19452 |
. . . . . . . 8
⊢ ((𝑄 ∈ 𝑇 ∧ 𝑃:𝐷–1-1-onto→𝐷) → ((𝑃 ∘ 𝑄) ∘ ◡𝑃) ∈ 𝑇) |
| 20 | 1, 18, 19 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 ∘ 𝑄) ∘ ◡𝑃) ∈ 𝑇) |
| 21 | 16, 20 | eqeltrd 2835 |
. . . . . 6
⊢ (𝜑 → ((𝑃 ∘ 𝑄) ∘ 𝑃) ∈ 𝑇) |
| 22 | 21 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∘ 𝑄) ∘ 𝑃) ∈ 𝑇) |
| 23 | 12 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝑇) |
| 24 | | coass 6259 |
. . . . . . 7
⊢ (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃) = ((𝑃 ∘ 𝑄) ∘ (𝑃 ∘ 𝑃)) |
| 25 | 2, 3 | pmtrfinv 19447 |
. . . . . . . . . 10
⊢ (𝑃 ∈ 𝑇 → (𝑃 ∘ 𝑃) = ( I ↾ 𝐷)) |
| 26 | 12, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 ∘ 𝑃) = ( I ↾ 𝐷)) |
| 27 | 26 | coeq2d 5847 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 ∘ 𝑄) ∘ (𝑃 ∘ 𝑃)) = ((𝑃 ∘ 𝑄) ∘ ( I ↾ 𝐷))) |
| 28 | | f1of 6823 |
. . . . . . . . . . 11
⊢ (𝑃:𝐷–1-1-onto→𝐷 → 𝑃:𝐷⟶𝐷) |
| 29 | 18, 28 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃:𝐷⟶𝐷) |
| 30 | 2, 3 | pmtrff1o 19449 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ 𝑇 → 𝑄:𝐷–1-1-onto→𝐷) |
| 31 | 1, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄:𝐷–1-1-onto→𝐷) |
| 32 | | f1of 6823 |
. . . . . . . . . . 11
⊢ (𝑄:𝐷–1-1-onto→𝐷 → 𝑄:𝐷⟶𝐷) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄:𝐷⟶𝐷) |
| 34 | | fco 6735 |
. . . . . . . . . 10
⊢ ((𝑃:𝐷⟶𝐷 ∧ 𝑄:𝐷⟶𝐷) → (𝑃 ∘ 𝑄):𝐷⟶𝐷) |
| 35 | 29, 33, 34 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 ∘ 𝑄):𝐷⟶𝐷) |
| 36 | | fcoi1 6757 |
. . . . . . . . 9
⊢ ((𝑃 ∘ 𝑄):𝐷⟶𝐷 → ((𝑃 ∘ 𝑄) ∘ ( I ↾ 𝐷)) = (𝑃 ∘ 𝑄)) |
| 37 | 35, 36 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 ∘ 𝑄) ∘ ( I ↾ 𝐷)) = (𝑃 ∘ 𝑄)) |
| 38 | 27, 37 | eqtrd 2771 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 ∘ 𝑄) ∘ (𝑃 ∘ 𝑃)) = (𝑃 ∘ 𝑄)) |
| 39 | 24, 38 | eqtr2id 2784 |
. . . . . 6
⊢ (𝜑 → (𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃)) |
| 40 | 39 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃)) |
| 41 | | psgnunilem1.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ dom (𝑃 ∖ I )) |
| 42 | 41 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → 𝐴 ∈ dom (𝑃 ∖ I )) |
| 43 | 18 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝑃:𝐷–1-1-onto→𝐷) |
| 44 | 31 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝑄:𝐷–1-1-onto→𝐷) |
| 45 | 2, 3 | pmtrfb 19451 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ 𝑇 ↔ (𝐷 ∈ V ∧ 𝑃:𝐷–1-1-onto→𝐷 ∧ dom (𝑃 ∖ I ) ≈
2o)) |
| 46 | 45 | simp3bi 1147 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ 𝑇 → dom (𝑃 ∖ I ) ≈
2o) |
| 47 | 12, 46 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (𝑃 ∖ I ) ≈
2o) |
| 48 | 47 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑃 ∖ I ) ≈
2o) |
| 49 | | 2onn 8659 |
. . . . . . . . . . . . . . 15
⊢
2o ∈ ω |
| 50 | | nnfi 9186 |
. . . . . . . . . . . . . . 15
⊢
(2o ∈ ω → 2o ∈
Fin) |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
2o ∈ Fin |
| 52 | 2, 3 | pmtrfb 19451 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑄 ∈ 𝑇 ↔ (𝐷 ∈ V ∧ 𝑄:𝐷–1-1-onto→𝐷 ∧ dom (𝑄 ∖ I ) ≈
2o)) |
| 53 | 52 | simp3bi 1147 |
. . . . . . . . . . . . . . . 16
⊢ (𝑄 ∈ 𝑇 → dom (𝑄 ∖ I ) ≈
2o) |
| 54 | 1, 53 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom (𝑄 ∖ I ) ≈
2o) |
| 55 | | enfi 9206 |
. . . . . . . . . . . . . . 15
⊢ (dom
(𝑄 ∖ I ) ≈
2o → (dom (𝑄 ∖ I ) ∈ Fin ↔ 2o
∈ Fin)) |
| 56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (dom (𝑄 ∖ I ) ∈ Fin ↔ 2o
∈ Fin)) |
| 57 | 51, 56 | mpbiri 258 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom (𝑄 ∖ I ) ∈ Fin) |
| 58 | 57 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑄 ∖ I ) ∈
Fin) |
| 59 | 41 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝐴 ∈ dom (𝑃 ∖ I )) |
| 60 | | en2eleq 10027 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ dom (𝑃 ∖ I ) ∧ dom (𝑃 ∖ I ) ≈ 2o) →
dom (𝑃 ∖ I ) = {𝐴, ∪
(dom (𝑃 ∖ I ) ∖
{𝐴})}) |
| 61 | 59, 48, 60 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑃 ∖ I ) = {𝐴, ∪
(dom (𝑃 ∖ I ) ∖
{𝐴})}) |
| 62 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝐴 ∈ dom (𝑄 ∖ I )) |
| 63 | | f1ofn 6824 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃:𝐷–1-1-onto→𝐷 → 𝑃 Fn 𝐷) |
| 64 | 18, 63 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 Fn 𝐷) |
| 65 | 64 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝑃 Fn 𝐷) |
| 66 | | fimass 6731 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃:𝐷⟶𝐷 → (𝑃 “ dom (𝑄 ∖ I )) ⊆ 𝐷) |
| 67 | 29, 66 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑃 “ dom (𝑄 ∖ I )) ⊆ 𝐷) |
| 68 | 67 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → (𝑃 “ dom (𝑄 ∖ I )) ⊆ 𝐷) |
| 69 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I ))) |
| 70 | | fnfvima 7230 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 Fn 𝐷 ∧ (𝑃 “ dom (𝑄 ∖ I )) ⊆ 𝐷 ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I ))) → (𝑃‘𝐴) ∈ (𝑃 “ (𝑃 “ dom (𝑄 ∖ I )))) |
| 71 | 65, 68, 69, 70 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → (𝑃‘𝐴) ∈ (𝑃 “ (𝑃 “ dom (𝑄 ∖ I )))) |
| 72 | | difss 4116 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃 ∖ I ) ⊆ 𝑃 |
| 73 | | dmss 5887 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑃 ∖ I ) ⊆ 𝑃 → dom (𝑃 ∖ I ) ⊆ dom 𝑃) |
| 74 | 72, 73 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ dom
(𝑃 ∖ I ) ⊆ dom
𝑃 |
| 75 | | f1odm 6827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃:𝐷–1-1-onto→𝐷 → dom 𝑃 = 𝐷) |
| 76 | 18, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → dom 𝑃 = 𝐷) |
| 77 | 74, 76 | sseqtrid 4006 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → dom (𝑃 ∖ I ) ⊆ 𝐷) |
| 78 | 77, 41 | sseldd 3964 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| 79 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . 19
⊢ dom
(𝑃 ∖ I ) = dom (𝑃 ∖ I ) |
| 80 | 2, 3, 79 | pmtrffv 19445 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ 𝑇 ∧ 𝐴 ∈ 𝐷) → (𝑃‘𝐴) = if(𝐴 ∈ dom (𝑃 ∖ I ), ∪
(dom (𝑃 ∖ I ) ∖
{𝐴}), 𝐴)) |
| 81 | 12, 78, 80 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑃‘𝐴) = if(𝐴 ∈ dom (𝑃 ∖ I ), ∪
(dom (𝑃 ∖ I ) ∖
{𝐴}), 𝐴)) |
| 82 | 41 | iftrued 4513 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝐴 ∈ dom (𝑃 ∖ I ), ∪
(dom (𝑃 ∖ I ) ∖
{𝐴}), 𝐴) = ∪ (dom (𝑃 ∖ I ) ∖ {𝐴})) |
| 83 | 81, 82 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑃‘𝐴) = ∪ (dom (𝑃 ∖ I ) ∖ {𝐴})) |
| 84 | 83 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → (𝑃‘𝐴) = ∪ (dom (𝑃 ∖ I ) ∖ {𝐴})) |
| 85 | | imaco 6245 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∘ 𝑃) “ dom (𝑄 ∖ I )) = (𝑃 “ (𝑃 “ dom (𝑄 ∖ I ))) |
| 86 | 26 | imaeq1d 6051 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑃 ∘ 𝑃) “ dom (𝑄 ∖ I )) = (( I ↾ 𝐷) “ dom (𝑄 ∖ I ))) |
| 87 | | difss 4116 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑄 ∖ I ) ⊆ 𝑄 |
| 88 | | dmss 5887 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑄 ∖ I ) ⊆ 𝑄 → dom (𝑄 ∖ I ) ⊆ dom 𝑄) |
| 89 | 87, 88 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ dom
(𝑄 ∖ I ) ⊆ dom
𝑄 |
| 90 | | f1odm 6827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑄:𝐷–1-1-onto→𝐷 → dom 𝑄 = 𝐷) |
| 91 | 89, 90 | sseqtrid 4006 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑄:𝐷–1-1-onto→𝐷 → dom (𝑄 ∖ I ) ⊆ 𝐷) |
| 92 | 31, 91 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → dom (𝑄 ∖ I ) ⊆ 𝐷) |
| 93 | | resiima 6068 |
. . . . . . . . . . . . . . . . . . 19
⊢ (dom
(𝑄 ∖ I ) ⊆
𝐷 → (( I ↾ 𝐷) “ dom (𝑄 ∖ I )) = dom (𝑄 ∖ I )) |
| 94 | 92, 93 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (( I ↾ 𝐷) “ dom (𝑄 ∖ I )) = dom (𝑄 ∖ I )) |
| 95 | 86, 94 | eqtrd 2771 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑃 ∘ 𝑃) “ dom (𝑄 ∖ I )) = dom (𝑄 ∖ I )) |
| 96 | 85, 95 | eqtr3id 2785 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑃 “ (𝑃 “ dom (𝑄 ∖ I ))) = dom (𝑄 ∖ I )) |
| 97 | 96 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → (𝑃 “ (𝑃 “ dom (𝑄 ∖ I ))) = dom (𝑄 ∖ I )) |
| 98 | 71, 84, 97 | 3eltr3d 2849 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → ∪ (dom (𝑃 ∖ I ) ∖ {𝐴}) ∈ dom (𝑄 ∖ I )) |
| 99 | 62, 98 | prssd 4803 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → {𝐴, ∪ (dom (𝑃 ∖ I ) ∖ {𝐴})} ⊆ dom (𝑄 ∖ I )) |
| 100 | 61, 99 | eqsstrd 3998 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑃 ∖ I ) ⊆ dom (𝑄 ∖ I )) |
| 101 | 54 | ensymd 9024 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2o ≈ dom
(𝑄 ∖ I
)) |
| 102 | | entr 9025 |
. . . . . . . . . . . . . 14
⊢ ((dom
(𝑃 ∖ I ) ≈
2o ∧ 2o ≈ dom (𝑄 ∖ I )) → dom (𝑃 ∖ I ) ≈ dom (𝑄 ∖ I )) |
| 103 | 47, 101, 102 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom (𝑃 ∖ I ) ≈ dom (𝑄 ∖ I )) |
| 104 | 103 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑃 ∖ I ) ≈ dom (𝑄 ∖ I )) |
| 105 | | fisseneq 9270 |
. . . . . . . . . . . 12
⊢ ((dom
(𝑄 ∖ I ) ∈ Fin
∧ dom (𝑃 ∖ I )
⊆ dom (𝑄 ∖ I )
∧ dom (𝑃 ∖ I )
≈ dom (𝑄 ∖ I ))
→ dom (𝑃 ∖ I ) =
dom (𝑄 ∖ I
)) |
| 106 | 58, 100, 104, 105 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑃 ∖ I ) = dom (𝑄 ∖ I )) |
| 107 | 106 | eqcomd 2742 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → dom (𝑄 ∖ I ) = dom (𝑃 ∖ I )) |
| 108 | | f1otrspeq 19433 |
. . . . . . . . . 10
⊢ (((𝑃:𝐷–1-1-onto→𝐷 ∧ 𝑄:𝐷–1-1-onto→𝐷) ∧ (dom (𝑃 ∖ I ) ≈ 2o ∧ dom
(𝑄 ∖ I ) = dom (𝑃 ∖ I ))) → 𝑃 = 𝑄) |
| 109 | 43, 44, 48, 107, 108 | syl22anc 838 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 ∈ dom (𝑄 ∖ I ) ∧ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) → 𝑃 = 𝑄) |
| 110 | 109 | expr 456 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )) → 𝑃 = 𝑄)) |
| 111 | 110 | necon3ad 2946 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝑃 ≠ 𝑄 → ¬ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) |
| 112 | 111 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → ¬ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I ))) |
| 113 | 16 | difeq1d 4105 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ) = (((𝑃 ∘ 𝑄) ∘ ◡𝑃) ∖ I )) |
| 114 | 113 | dmeqd 5890 |
. . . . . . . . 9
⊢ (𝜑 → dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ) = dom (((𝑃 ∘ 𝑄) ∘ ◡𝑃) ∖ I )) |
| 115 | | f1omvdconj 19432 |
. . . . . . . . . 10
⊢ ((𝑄:𝐷⟶𝐷 ∧ 𝑃:𝐷–1-1-onto→𝐷) → dom (((𝑃 ∘ 𝑄) ∘ ◡𝑃) ∖ I ) = (𝑃 “ dom (𝑄 ∖ I ))) |
| 116 | 33, 18, 115 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → dom (((𝑃 ∘ 𝑄) ∘ ◡𝑃) ∖ I ) = (𝑃 “ dom (𝑄 ∖ I ))) |
| 117 | 114, 116 | eqtrd 2771 |
. . . . . . . 8
⊢ (𝜑 → dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ) = (𝑃 “ dom (𝑄 ∖ I ))) |
| 118 | 117 | eleq2d 2821 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ) ↔ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) |
| 119 | 118 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → (𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ) ↔ 𝐴 ∈ (𝑃 “ dom (𝑄 ∖ I )))) |
| 120 | 112, 119 | mtbird 325 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → ¬ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I )) |
| 121 | | coeq1 5842 |
. . . . . . . 8
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → (𝑟 ∘ 𝑠) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑠)) |
| 122 | 121 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ↔ (𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑠))) |
| 123 | | difeq1 4099 |
. . . . . . . . . 10
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → (𝑟 ∖ I ) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I )) |
| 124 | 123 | dmeqd 5890 |
. . . . . . . . 9
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → dom (𝑟 ∖ I ) = dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I )) |
| 125 | 124 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → (𝐴 ∈ dom (𝑟 ∖ I ) ↔ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ))) |
| 126 | 125 | notbid 318 |
. . . . . . 7
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → (¬ 𝐴 ∈ dom (𝑟 ∖ I ) ↔ ¬ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ))) |
| 127 | 122, 126 | 3anbi13d 1440 |
. . . . . 6
⊢ (𝑟 = ((𝑃 ∘ 𝑄) ∘ 𝑃) → (((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )) ↔ ((𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I )))) |
| 128 | | coeq2 5843 |
. . . . . . . 8
⊢ (𝑠 = 𝑃 → (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑠) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃)) |
| 129 | 128 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑠 = 𝑃 → ((𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑠) ↔ (𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃))) |
| 130 | | difeq1 4099 |
. . . . . . . . 9
⊢ (𝑠 = 𝑃 → (𝑠 ∖ I ) = (𝑃 ∖ I )) |
| 131 | 130 | dmeqd 5890 |
. . . . . . . 8
⊢ (𝑠 = 𝑃 → dom (𝑠 ∖ I ) = dom (𝑃 ∖ I )) |
| 132 | 131 | eleq2d 2821 |
. . . . . . 7
⊢ (𝑠 = 𝑃 → (𝐴 ∈ dom (𝑠 ∖ I ) ↔ 𝐴 ∈ dom (𝑃 ∖ I ))) |
| 133 | 129, 132 | 3anbi12d 1439 |
. . . . . 6
⊢ (𝑠 = 𝑃 → (((𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I )) ↔ ((𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃) ∧ 𝐴 ∈ dom (𝑃 ∖ I ) ∧ ¬ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I )))) |
| 134 | 127, 133 | rspc2ev 3619 |
. . . . 5
⊢ ((((𝑃 ∘ 𝑄) ∘ 𝑃) ∈ 𝑇 ∧ 𝑃 ∈ 𝑇 ∧ ((𝑃 ∘ 𝑄) = (((𝑃 ∘ 𝑄) ∘ 𝑃) ∘ 𝑃) ∧ 𝐴 ∈ dom (𝑃 ∖ I ) ∧ ¬ 𝐴 ∈ dom (((𝑃 ∘ 𝑄) ∘ 𝑃) ∖ I ))) → ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I ))) |
| 135 | 22, 23, 40, 42, 120, 134 | syl113anc 1384 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I ))) |
| 136 | 135 | olcd 874 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) |
| 137 | 11, 136 | pm2.61dane 3020 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑄 ∖ I )) → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) |
| 138 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → 𝑄 ∈ 𝑇) |
| 139 | | coass 6259 |
. . . . . . 7
⊢ ((𝑄 ∘ 𝑃) ∘ 𝑄) = (𝑄 ∘ (𝑃 ∘ 𝑄)) |
| 140 | 2, 3 | pmtrfcnv 19450 |
. . . . . . . . . 10
⊢ (𝑄 ∈ 𝑇 → ◡𝑄 = 𝑄) |
| 141 | 1, 140 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ◡𝑄 = 𝑄) |
| 142 | 141 | eqcomd 2742 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 = ◡𝑄) |
| 143 | 142 | coeq2d 5847 |
. . . . . . 7
⊢ (𝜑 → ((𝑄 ∘ 𝑃) ∘ 𝑄) = ((𝑄 ∘ 𝑃) ∘ ◡𝑄)) |
| 144 | 139, 143 | eqtr3id 2785 |
. . . . . 6
⊢ (𝜑 → (𝑄 ∘ (𝑃 ∘ 𝑄)) = ((𝑄 ∘ 𝑃) ∘ ◡𝑄)) |
| 145 | 2, 3 | pmtrfconj 19452 |
. . . . . . 7
⊢ ((𝑃 ∈ 𝑇 ∧ 𝑄:𝐷–1-1-onto→𝐷) → ((𝑄 ∘ 𝑃) ∘ ◡𝑄) ∈ 𝑇) |
| 146 | 12, 31, 145 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((𝑄 ∘ 𝑃) ∘ ◡𝑄) ∈ 𝑇) |
| 147 | 144, 146 | eqeltrd 2835 |
. . . . 5
⊢ (𝜑 → (𝑄 ∘ (𝑃 ∘ 𝑄)) ∈ 𝑇) |
| 148 | 147 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝑄 ∘ (𝑃 ∘ 𝑄)) ∈ 𝑇) |
| 149 | 5 | coeq1d 5846 |
. . . . . . 7
⊢ (𝜑 → ((𝑄 ∘ 𝑄) ∘ (𝑃 ∘ 𝑄)) = (( I ↾ 𝐷) ∘ (𝑃 ∘ 𝑄))) |
| 150 | | fcoi2 6758 |
. . . . . . . 8
⊢ ((𝑃 ∘ 𝑄):𝐷⟶𝐷 → (( I ↾ 𝐷) ∘ (𝑃 ∘ 𝑄)) = (𝑃 ∘ 𝑄)) |
| 151 | 35, 150 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (( I ↾ 𝐷) ∘ (𝑃 ∘ 𝑄)) = (𝑃 ∘ 𝑄)) |
| 152 | 149, 151 | eqtr2d 2772 |
. . . . . 6
⊢ (𝜑 → (𝑃 ∘ 𝑄) = ((𝑄 ∘ 𝑄) ∘ (𝑃 ∘ 𝑄))) |
| 153 | | coass 6259 |
. . . . . 6
⊢ ((𝑄 ∘ 𝑄) ∘ (𝑃 ∘ 𝑄)) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄))) |
| 154 | 152, 153 | eqtrdi 2787 |
. . . . 5
⊢ (𝜑 → (𝑃 ∘ 𝑄) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄)))) |
| 155 | 154 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝑃 ∘ 𝑄) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄)))) |
| 156 | | f1ofn 6824 |
. . . . . . . . . 10
⊢ (𝑄:𝐷–1-1-onto→𝐷 → 𝑄 Fn 𝐷) |
| 157 | 31, 156 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 Fn 𝐷) |
| 158 | | fnelnfp 7174 |
. . . . . . . . 9
⊢ ((𝑄 Fn 𝐷 ∧ 𝐴 ∈ 𝐷) → (𝐴 ∈ dom (𝑄 ∖ I ) ↔ (𝑄‘𝐴) ≠ 𝐴)) |
| 159 | 157, 78, 158 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∈ dom (𝑄 ∖ I ) ↔ (𝑄‘𝐴) ≠ 𝐴)) |
| 160 | 159 | necon2bbid 2976 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘𝐴) = 𝐴 ↔ ¬ 𝐴 ∈ dom (𝑄 ∖ I ))) |
| 161 | 160 | biimpar 477 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝑄‘𝐴) = 𝐴) |
| 162 | | fnfvima 7230 |
. . . . . . . 8
⊢ ((𝑄 Fn 𝐷 ∧ dom (𝑃 ∖ I ) ⊆ 𝐷 ∧ 𝐴 ∈ dom (𝑃 ∖ I )) → (𝑄‘𝐴) ∈ (𝑄 “ dom (𝑃 ∖ I ))) |
| 163 | 157, 77, 41, 162 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝐴) ∈ (𝑄 “ dom (𝑃 ∖ I ))) |
| 164 | 163 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → (𝑄‘𝐴) ∈ (𝑄 “ dom (𝑃 ∖ I ))) |
| 165 | 161, 164 | eqeltrrd 2836 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → 𝐴 ∈ (𝑄 “ dom (𝑃 ∖ I ))) |
| 166 | 144 | difeq1d 4105 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ) = (((𝑄 ∘ 𝑃) ∘ ◡𝑄) ∖ I )) |
| 167 | 166 | dmeqd 5890 |
. . . . . . 7
⊢ (𝜑 → dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ) = dom (((𝑄 ∘ 𝑃) ∘ ◡𝑄) ∖ I )) |
| 168 | | f1omvdconj 19432 |
. . . . . . . 8
⊢ ((𝑃:𝐷⟶𝐷 ∧ 𝑄:𝐷–1-1-onto→𝐷) → dom (((𝑄 ∘ 𝑃) ∘ ◡𝑄) ∖ I ) = (𝑄 “ dom (𝑃 ∖ I ))) |
| 169 | 29, 31, 168 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → dom (((𝑄 ∘ 𝑃) ∘ ◡𝑄) ∖ I ) = (𝑄 “ dom (𝑃 ∖ I ))) |
| 170 | 167, 169 | eqtrd 2771 |
. . . . . 6
⊢ (𝜑 → dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ) = (𝑄 “ dom (𝑃 ∖ I ))) |
| 171 | 170 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ) = (𝑄 “ dom (𝑃 ∖ I ))) |
| 172 | 165, 171 | eleqtrrd 2838 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → 𝐴 ∈ dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I )) |
| 173 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → ¬ 𝐴 ∈ dom (𝑄 ∖ I )) |
| 174 | | coeq1 5842 |
. . . . . . 7
⊢ (𝑟 = 𝑄 → (𝑟 ∘ 𝑠) = (𝑄 ∘ 𝑠)) |
| 175 | 174 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑟 = 𝑄 → ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ↔ (𝑃 ∘ 𝑄) = (𝑄 ∘ 𝑠))) |
| 176 | | difeq1 4099 |
. . . . . . . . 9
⊢ (𝑟 = 𝑄 → (𝑟 ∖ I ) = (𝑄 ∖ I )) |
| 177 | 176 | dmeqd 5890 |
. . . . . . . 8
⊢ (𝑟 = 𝑄 → dom (𝑟 ∖ I ) = dom (𝑄 ∖ I )) |
| 178 | 177 | eleq2d 2821 |
. . . . . . 7
⊢ (𝑟 = 𝑄 → (𝐴 ∈ dom (𝑟 ∖ I ) ↔ 𝐴 ∈ dom (𝑄 ∖ I ))) |
| 179 | 178 | notbid 318 |
. . . . . 6
⊢ (𝑟 = 𝑄 → (¬ 𝐴 ∈ dom (𝑟 ∖ I ) ↔ ¬ 𝐴 ∈ dom (𝑄 ∖ I ))) |
| 180 | 175, 179 | 3anbi13d 1440 |
. . . . 5
⊢ (𝑟 = 𝑄 → (((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )) ↔ ((𝑃 ∘ 𝑄) = (𝑄 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )))) |
| 181 | | coeq2 5843 |
. . . . . . 7
⊢ (𝑠 = (𝑄 ∘ (𝑃 ∘ 𝑄)) → (𝑄 ∘ 𝑠) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄)))) |
| 182 | 181 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑠 = (𝑄 ∘ (𝑃 ∘ 𝑄)) → ((𝑃 ∘ 𝑄) = (𝑄 ∘ 𝑠) ↔ (𝑃 ∘ 𝑄) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄))))) |
| 183 | | difeq1 4099 |
. . . . . . . 8
⊢ (𝑠 = (𝑄 ∘ (𝑃 ∘ 𝑄)) → (𝑠 ∖ I ) = ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I )) |
| 184 | 183 | dmeqd 5890 |
. . . . . . 7
⊢ (𝑠 = (𝑄 ∘ (𝑃 ∘ 𝑄)) → dom (𝑠 ∖ I ) = dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I )) |
| 185 | 184 | eleq2d 2821 |
. . . . . 6
⊢ (𝑠 = (𝑄 ∘ (𝑃 ∘ 𝑄)) → (𝐴 ∈ dom (𝑠 ∖ I ) ↔ 𝐴 ∈ dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ))) |
| 186 | 182, 185 | 3anbi12d 1439 |
. . . . 5
⊢ (𝑠 = (𝑄 ∘ (𝑃 ∘ 𝑄)) → (((𝑃 ∘ 𝑄) = (𝑄 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) ↔ ((𝑃 ∘ 𝑄) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄))) ∧ 𝐴 ∈ dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )))) |
| 187 | 180, 186 | rspc2ev 3619 |
. . . 4
⊢ ((𝑄 ∈ 𝑇 ∧ (𝑄 ∘ (𝑃 ∘ 𝑄)) ∈ 𝑇 ∧ ((𝑃 ∘ 𝑄) = (𝑄 ∘ (𝑄 ∘ (𝑃 ∘ 𝑄))) ∧ 𝐴 ∈ dom ((𝑄 ∘ (𝑃 ∘ 𝑄)) ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I ))) → ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I ))) |
| 188 | 138, 148,
155, 172, 173, 187 | syl113anc 1384 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I ))) |
| 189 | 188 | olcd 874 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ dom (𝑄 ∖ I )) → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) |
| 190 | 137, 189 | pm2.61dan 812 |
1
⊢ (𝜑 → ((𝑃 ∘ 𝑄) = ( I ↾ 𝐷) ∨ ∃𝑟 ∈ 𝑇 ∃𝑠 ∈ 𝑇 ((𝑃 ∘ 𝑄) = (𝑟 ∘ 𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) |