Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evpmval Structured version   Visualization version   GIF version

Theorem evpmval 31412
Description: Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023.)
Hypothesis
Ref Expression
evpmval.1 𝐴 = (pmEven‘𝐷)
Assertion
Ref Expression
evpmval (𝐷𝑉𝐴 = ((pmSgn‘𝐷) “ {1}))

Proof of Theorem evpmval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 evpmval.1 . 2 𝐴 = (pmEven‘𝐷)
2 elex 3450 . . 3 (𝐷𝑉𝐷 ∈ V)
3 fveq2 6774 . . . . . 6 (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷))
43cnveqd 5784 . . . . 5 (𝑑 = 𝐷(pmSgn‘𝑑) = (pmSgn‘𝐷))
54imaeq1d 5968 . . . 4 (𝑑 = 𝐷 → ((pmSgn‘𝑑) “ {1}) = ((pmSgn‘𝐷) “ {1}))
6 df-evpm 19100 . . . 4 pmEven = (𝑑 ∈ V ↦ ((pmSgn‘𝑑) “ {1}))
7 fvex 6787 . . . . . 6 (pmSgn‘𝐷) ∈ V
87cnvex 7772 . . . . 5 (pmSgn‘𝐷) ∈ V
98imaex 7763 . . . 4 ((pmSgn‘𝐷) “ {1}) ∈ V
105, 6, 9fvmpt 6875 . . 3 (𝐷 ∈ V → (pmEven‘𝐷) = ((pmSgn‘𝐷) “ {1}))
112, 10syl 17 . 2 (𝐷𝑉 → (pmEven‘𝐷) = ((pmSgn‘𝐷) “ {1}))
121, 11eqtrid 2790 1 (𝐷𝑉𝐴 = ((pmSgn‘𝐷) “ {1}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  ccnv 5588  cima 5592  cfv 6433  1c1 10872  pmSgncpsgn 19097  pmEvencevpm 19098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-evpm 19100
This theorem is referenced by:  evpmsubg  31414
  Copyright terms: Public domain W3C validator