![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evpmval | Structured version Visualization version GIF version |
Description: Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023.) |
Ref | Expression |
---|---|
evpmval.1 | β’ π΄ = (pmEvenβπ·) |
Ref | Expression |
---|---|
evpmval | β’ (π· β π β π΄ = (β‘(pmSgnβπ·) β {1})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evpmval.1 | . 2 β’ π΄ = (pmEvenβπ·) | |
2 | elex 3492 | . . 3 β’ (π· β π β π· β V) | |
3 | fveq2 6888 | . . . . . 6 β’ (π = π· β (pmSgnβπ) = (pmSgnβπ·)) | |
4 | 3 | cnveqd 5873 | . . . . 5 β’ (π = π· β β‘(pmSgnβπ) = β‘(pmSgnβπ·)) |
5 | 4 | imaeq1d 6056 | . . . 4 β’ (π = π· β (β‘(pmSgnβπ) β {1}) = (β‘(pmSgnβπ·) β {1})) |
6 | df-evpm 19354 | . . . 4 β’ pmEven = (π β V β¦ (β‘(pmSgnβπ) β {1})) | |
7 | fvex 6901 | . . . . . 6 β’ (pmSgnβπ·) β V | |
8 | 7 | cnvex 7912 | . . . . 5 β’ β‘(pmSgnβπ·) β V |
9 | 8 | imaex 7903 | . . . 4 β’ (β‘(pmSgnβπ·) β {1}) β V |
10 | 5, 6, 9 | fvmpt 6995 | . . 3 β’ (π· β V β (pmEvenβπ·) = (β‘(pmSgnβπ·) β {1})) |
11 | 2, 10 | syl 17 | . 2 β’ (π· β π β (pmEvenβπ·) = (β‘(pmSgnβπ·) β {1})) |
12 | 1, 11 | eqtrid 2784 | 1 β’ (π· β π β π΄ = (β‘(pmSgnβπ·) β {1})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 {csn 4627 β‘ccnv 5674 β cima 5678 βcfv 6540 1c1 11107 pmSgncpsgn 19351 pmEvencevpm 19352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fv 6548 df-evpm 19354 |
This theorem is referenced by: evpmsubg 32293 |
Copyright terms: Public domain | W3C validator |