Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evpmval Structured version   Visualization version   GIF version

Theorem evpmval 32291
Description: Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023.)
Hypothesis
Ref Expression
evpmval.1 𝐴 = (pmEvenβ€˜π·)
Assertion
Ref Expression
evpmval (𝐷 ∈ 𝑉 β†’ 𝐴 = (β—‘(pmSgnβ€˜π·) β€œ {1}))

Proof of Theorem evpmval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 evpmval.1 . 2 𝐴 = (pmEvenβ€˜π·)
2 elex 3492 . . 3 (𝐷 ∈ 𝑉 β†’ 𝐷 ∈ V)
3 fveq2 6888 . . . . . 6 (𝑑 = 𝐷 β†’ (pmSgnβ€˜π‘‘) = (pmSgnβ€˜π·))
43cnveqd 5873 . . . . 5 (𝑑 = 𝐷 β†’ β—‘(pmSgnβ€˜π‘‘) = β—‘(pmSgnβ€˜π·))
54imaeq1d 6056 . . . 4 (𝑑 = 𝐷 β†’ (β—‘(pmSgnβ€˜π‘‘) β€œ {1}) = (β—‘(pmSgnβ€˜π·) β€œ {1}))
6 df-evpm 19354 . . . 4 pmEven = (𝑑 ∈ V ↦ (β—‘(pmSgnβ€˜π‘‘) β€œ {1}))
7 fvex 6901 . . . . . 6 (pmSgnβ€˜π·) ∈ V
87cnvex 7912 . . . . 5 β—‘(pmSgnβ€˜π·) ∈ V
98imaex 7903 . . . 4 (β—‘(pmSgnβ€˜π·) β€œ {1}) ∈ V
105, 6, 9fvmpt 6995 . . 3 (𝐷 ∈ V β†’ (pmEvenβ€˜π·) = (β—‘(pmSgnβ€˜π·) β€œ {1}))
112, 10syl 17 . 2 (𝐷 ∈ 𝑉 β†’ (pmEvenβ€˜π·) = (β—‘(pmSgnβ€˜π·) β€œ {1}))
121, 11eqtrid 2784 1 (𝐷 ∈ 𝑉 β†’ 𝐴 = (β—‘(pmSgnβ€˜π·) β€œ {1}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474  {csn 4627  β—‘ccnv 5674   β€œ cima 5678  β€˜cfv 6540  1c1 11107  pmSgncpsgn 19351  pmEvencevpm 19352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fv 6548  df-evpm 19354
This theorem is referenced by:  evpmsubg  32293
  Copyright terms: Public domain W3C validator