| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evpmval | Structured version Visualization version GIF version | ||
| Description: Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023.) |
| Ref | Expression |
|---|---|
| evpmval.1 | ⊢ 𝐴 = (pmEven‘𝐷) |
| Ref | Expression |
|---|---|
| evpmval | ⊢ (𝐷 ∈ 𝑉 → 𝐴 = (◡(pmSgn‘𝐷) “ {1})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evpmval.1 | . 2 ⊢ 𝐴 = (pmEven‘𝐷) | |
| 2 | elex 3485 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ V) | |
| 3 | fveq2 6881 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
| 4 | 3 | cnveqd 5860 | . . . . 5 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡(pmSgn‘𝐷)) |
| 5 | 4 | imaeq1d 6051 | . . . 4 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡(pmSgn‘𝐷) “ {1})) |
| 6 | df-evpm 19478 | . . . 4 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
| 7 | fvex 6894 | . . . . . 6 ⊢ (pmSgn‘𝐷) ∈ V | |
| 8 | 7 | cnvex 7926 | . . . . 5 ⊢ ◡(pmSgn‘𝐷) ∈ V |
| 9 | 8 | imaex 7915 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ∈ V |
| 10 | 5, 6, 9 | fvmpt 6991 | . . 3 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
| 11 | 2, 10 | syl 17 | . 2 ⊢ (𝐷 ∈ 𝑉 → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
| 12 | 1, 11 | eqtrid 2783 | 1 ⊢ (𝐷 ∈ 𝑉 → 𝐴 = (◡(pmSgn‘𝐷) “ {1})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 ◡ccnv 5658 “ cima 5662 ‘cfv 6536 1c1 11135 pmSgncpsgn 19475 pmEvencevpm 19476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-evpm 19478 |
| This theorem is referenced by: evpmsubg 33163 |
| Copyright terms: Public domain | W3C validator |