Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evpmval Structured version   Visualization version   GIF version

Theorem evpmval 32887
Description: Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023.)
Hypothesis
Ref Expression
evpmval.1 𝐴 = (pmEvenβ€˜π·)
Assertion
Ref Expression
evpmval (𝐷 ∈ 𝑉 β†’ 𝐴 = (β—‘(pmSgnβ€˜π·) β€œ {1}))

Proof of Theorem evpmval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 evpmval.1 . 2 𝐴 = (pmEvenβ€˜π·)
2 elex 3492 . . 3 (𝐷 ∈ 𝑉 β†’ 𝐷 ∈ V)
3 fveq2 6902 . . . . . 6 (𝑑 = 𝐷 β†’ (pmSgnβ€˜π‘‘) = (pmSgnβ€˜π·))
43cnveqd 5882 . . . . 5 (𝑑 = 𝐷 β†’ β—‘(pmSgnβ€˜π‘‘) = β—‘(pmSgnβ€˜π·))
54imaeq1d 6067 . . . 4 (𝑑 = 𝐷 β†’ (β—‘(pmSgnβ€˜π‘‘) β€œ {1}) = (β—‘(pmSgnβ€˜π·) β€œ {1}))
6 df-evpm 19454 . . . 4 pmEven = (𝑑 ∈ V ↦ (β—‘(pmSgnβ€˜π‘‘) β€œ {1}))
7 fvex 6915 . . . . . 6 (pmSgnβ€˜π·) ∈ V
87cnvex 7939 . . . . 5 β—‘(pmSgnβ€˜π·) ∈ V
98imaex 7928 . . . 4 (β—‘(pmSgnβ€˜π·) β€œ {1}) ∈ V
105, 6, 9fvmpt 7010 . . 3 (𝐷 ∈ V β†’ (pmEvenβ€˜π·) = (β—‘(pmSgnβ€˜π·) β€œ {1}))
112, 10syl 17 . 2 (𝐷 ∈ 𝑉 β†’ (pmEvenβ€˜π·) = (β—‘(pmSgnβ€˜π·) β€œ {1}))
121, 11eqtrid 2780 1 (𝐷 ∈ 𝑉 β†’ 𝐴 = (β—‘(pmSgnβ€˜π·) β€œ {1}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  Vcvv 3473  {csn 4632  β—‘ccnv 5681   β€œ cima 5685  β€˜cfv 6553  1c1 11147  pmSgncpsgn 19451  pmEvencevpm 19452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fv 6561  df-evpm 19454
This theorem is referenced by:  evpmsubg  32889
  Copyright terms: Public domain W3C validator