Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evpmval Structured version   Visualization version   GIF version

Theorem evpmval 33112
Description: Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023.)
Hypothesis
Ref Expression
evpmval.1 𝐴 = (pmEven‘𝐷)
Assertion
Ref Expression
evpmval (𝐷𝑉𝐴 = ((pmSgn‘𝐷) “ {1}))

Proof of Theorem evpmval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 evpmval.1 . 2 𝐴 = (pmEven‘𝐷)
2 elex 3457 . . 3 (𝐷𝑉𝐷 ∈ V)
3 fveq2 6822 . . . . . 6 (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷))
43cnveqd 5815 . . . . 5 (𝑑 = 𝐷(pmSgn‘𝑑) = (pmSgn‘𝐷))
54imaeq1d 6008 . . . 4 (𝑑 = 𝐷 → ((pmSgn‘𝑑) “ {1}) = ((pmSgn‘𝐷) “ {1}))
6 df-evpm 19405 . . . 4 pmEven = (𝑑 ∈ V ↦ ((pmSgn‘𝑑) “ {1}))
7 fvex 6835 . . . . . 6 (pmSgn‘𝐷) ∈ V
87cnvex 7855 . . . . 5 (pmSgn‘𝐷) ∈ V
98imaex 7844 . . . 4 ((pmSgn‘𝐷) “ {1}) ∈ V
105, 6, 9fvmpt 6929 . . 3 (𝐷 ∈ V → (pmEven‘𝐷) = ((pmSgn‘𝐷) “ {1}))
112, 10syl 17 . 2 (𝐷𝑉 → (pmEven‘𝐷) = ((pmSgn‘𝐷) “ {1}))
121, 11eqtrid 2778 1 (𝐷𝑉𝐴 = ((pmSgn‘𝐷) “ {1}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4576  ccnv 5615  cima 5619  cfv 6481  1c1 11007  pmSgncpsgn 19402  pmEvencevpm 19403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-evpm 19405
This theorem is referenced by:  evpmsubg  33114
  Copyright terms: Public domain W3C validator