| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evpmval | Structured version Visualization version GIF version | ||
| Description: Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023.) |
| Ref | Expression |
|---|---|
| evpmval.1 | ⊢ 𝐴 = (pmEven‘𝐷) |
| Ref | Expression |
|---|---|
| evpmval | ⊢ (𝐷 ∈ 𝑉 → 𝐴 = (◡(pmSgn‘𝐷) “ {1})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evpmval.1 | . 2 ⊢ 𝐴 = (pmEven‘𝐷) | |
| 2 | elex 3458 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ V) | |
| 3 | fveq2 6828 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
| 4 | 3 | cnveqd 5819 | . . . . 5 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡(pmSgn‘𝐷)) |
| 5 | 4 | imaeq1d 6012 | . . . 4 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡(pmSgn‘𝐷) “ {1})) |
| 6 | df-evpm 19406 | . . . 4 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
| 7 | fvex 6841 | . . . . . 6 ⊢ (pmSgn‘𝐷) ∈ V | |
| 8 | 7 | cnvex 7861 | . . . . 5 ⊢ ◡(pmSgn‘𝐷) ∈ V |
| 9 | 8 | imaex 7850 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ∈ V |
| 10 | 5, 6, 9 | fvmpt 6935 | . . 3 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
| 11 | 2, 10 | syl 17 | . 2 ⊢ (𝐷 ∈ 𝑉 → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
| 12 | 1, 11 | eqtrid 2780 | 1 ⊢ (𝐷 ∈ 𝑉 → 𝐴 = (◡(pmSgn‘𝐷) “ {1})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4575 ◡ccnv 5618 “ cima 5622 ‘cfv 6486 1c1 11014 pmSgncpsgn 19403 pmEvencevpm 19404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-evpm 19406 |
| This theorem is referenced by: evpmsubg 33123 |
| Copyright terms: Public domain | W3C validator |