Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evpmval Structured version   Visualization version   GIF version

Theorem evpmval 33138
Description: Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023.)
Hypothesis
Ref Expression
evpmval.1 𝐴 = (pmEven‘𝐷)
Assertion
Ref Expression
evpmval (𝐷𝑉𝐴 = ((pmSgn‘𝐷) “ {1}))

Proof of Theorem evpmval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 evpmval.1 . 2 𝐴 = (pmEven‘𝐷)
2 elex 3509 . . 3 (𝐷𝑉𝐷 ∈ V)
3 fveq2 6920 . . . . . 6 (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷))
43cnveqd 5900 . . . . 5 (𝑑 = 𝐷(pmSgn‘𝑑) = (pmSgn‘𝐷))
54imaeq1d 6088 . . . 4 (𝑑 = 𝐷 → ((pmSgn‘𝑑) “ {1}) = ((pmSgn‘𝐷) “ {1}))
6 df-evpm 19534 . . . 4 pmEven = (𝑑 ∈ V ↦ ((pmSgn‘𝑑) “ {1}))
7 fvex 6933 . . . . . 6 (pmSgn‘𝐷) ∈ V
87cnvex 7965 . . . . 5 (pmSgn‘𝐷) ∈ V
98imaex 7954 . . . 4 ((pmSgn‘𝐷) “ {1}) ∈ V
105, 6, 9fvmpt 7029 . . 3 (𝐷 ∈ V → (pmEven‘𝐷) = ((pmSgn‘𝐷) “ {1}))
112, 10syl 17 . 2 (𝐷𝑉 → (pmEven‘𝐷) = ((pmSgn‘𝐷) “ {1}))
121, 11eqtrid 2792 1 (𝐷𝑉𝐴 = ((pmSgn‘𝐷) “ {1}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  ccnv 5699  cima 5703  cfv 6573  1c1 11185  pmSgncpsgn 19531  pmEvencevpm 19532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-evpm 19534
This theorem is referenced by:  evpmsubg  33140
  Copyright terms: Public domain W3C validator