| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evpmval | Structured version Visualization version GIF version | ||
| Description: Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023.) |
| Ref | Expression |
|---|---|
| evpmval.1 | ⊢ 𝐴 = (pmEven‘𝐷) |
| Ref | Expression |
|---|---|
| evpmval | ⊢ (𝐷 ∈ 𝑉 → 𝐴 = (◡(pmSgn‘𝐷) “ {1})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evpmval.1 | . 2 ⊢ 𝐴 = (pmEven‘𝐷) | |
| 2 | elex 3471 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ V) | |
| 3 | fveq2 6861 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
| 4 | 3 | cnveqd 5842 | . . . . 5 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡(pmSgn‘𝐷)) |
| 5 | 4 | imaeq1d 6033 | . . . 4 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡(pmSgn‘𝐷) “ {1})) |
| 6 | df-evpm 19429 | . . . 4 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
| 7 | fvex 6874 | . . . . . 6 ⊢ (pmSgn‘𝐷) ∈ V | |
| 8 | 7 | cnvex 7904 | . . . . 5 ⊢ ◡(pmSgn‘𝐷) ∈ V |
| 9 | 8 | imaex 7893 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ∈ V |
| 10 | 5, 6, 9 | fvmpt 6971 | . . 3 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
| 11 | 2, 10 | syl 17 | . 2 ⊢ (𝐷 ∈ 𝑉 → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
| 12 | 1, 11 | eqtrid 2777 | 1 ⊢ (𝐷 ∈ 𝑉 → 𝐴 = (◡(pmSgn‘𝐷) “ {1})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 ◡ccnv 5640 “ cima 5644 ‘cfv 6514 1c1 11076 pmSgncpsgn 19426 pmEvencevpm 19427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-evpm 19429 |
| This theorem is referenced by: evpmsubg 33111 |
| Copyright terms: Public domain | W3C validator |