Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > evpmval | Structured version Visualization version GIF version |
Description: Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023.) |
Ref | Expression |
---|---|
evpmval.1 | ⊢ 𝐴 = (pmEven‘𝐷) |
Ref | Expression |
---|---|
evpmval | ⊢ (𝐷 ∈ 𝑉 → 𝐴 = (◡(pmSgn‘𝐷) “ {1})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evpmval.1 | . 2 ⊢ 𝐴 = (pmEven‘𝐷) | |
2 | elex 3459 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ V) | |
3 | fveq2 6809 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
4 | 3 | cnveqd 5802 | . . . . 5 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡(pmSgn‘𝐷)) |
5 | 4 | imaeq1d 5983 | . . . 4 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡(pmSgn‘𝐷) “ {1})) |
6 | df-evpm 19167 | . . . 4 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
7 | fvex 6822 | . . . . . 6 ⊢ (pmSgn‘𝐷) ∈ V | |
8 | 7 | cnvex 7815 | . . . . 5 ⊢ ◡(pmSgn‘𝐷) ∈ V |
9 | 8 | imaex 7806 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ∈ V |
10 | 5, 6, 9 | fvmpt 6912 | . . 3 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
11 | 2, 10 | syl 17 | . 2 ⊢ (𝐷 ∈ 𝑉 → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
12 | 1, 11 | eqtrid 2789 | 1 ⊢ (𝐷 ∈ 𝑉 → 𝐴 = (◡(pmSgn‘𝐷) “ {1})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 {csn 4569 ◡ccnv 5604 “ cima 5608 ‘cfv 6463 1c1 10942 pmSgncpsgn 19164 pmEvencevpm 19165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fv 6471 df-evpm 19167 |
This theorem is referenced by: evpmsubg 31522 |
Copyright terms: Public domain | W3C validator |