![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evpmval | Structured version Visualization version GIF version |
Description: Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023.) |
Ref | Expression |
---|---|
evpmval.1 | ⊢ 𝐴 = (pmEven‘𝐷) |
Ref | Expression |
---|---|
evpmval | ⊢ (𝐷 ∈ 𝑉 → 𝐴 = (◡(pmSgn‘𝐷) “ {1})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evpmval.1 | . 2 ⊢ 𝐴 = (pmEven‘𝐷) | |
2 | elex 3509 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ V) | |
3 | fveq2 6920 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
4 | 3 | cnveqd 5900 | . . . . 5 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡(pmSgn‘𝐷)) |
5 | 4 | imaeq1d 6088 | . . . 4 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡(pmSgn‘𝐷) “ {1})) |
6 | df-evpm 19534 | . . . 4 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
7 | fvex 6933 | . . . . . 6 ⊢ (pmSgn‘𝐷) ∈ V | |
8 | 7 | cnvex 7965 | . . . . 5 ⊢ ◡(pmSgn‘𝐷) ∈ V |
9 | 8 | imaex 7954 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ∈ V |
10 | 5, 6, 9 | fvmpt 7029 | . . 3 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
11 | 2, 10 | syl 17 | . 2 ⊢ (𝐷 ∈ 𝑉 → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
12 | 1, 11 | eqtrid 2792 | 1 ⊢ (𝐷 ∈ 𝑉 → 𝐴 = (◡(pmSgn‘𝐷) “ {1})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 ◡ccnv 5699 “ cima 5703 ‘cfv 6573 1c1 11185 pmSgncpsgn 19531 pmEvencevpm 19532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-evpm 19534 |
This theorem is referenced by: evpmsubg 33140 |
Copyright terms: Public domain | W3C validator |