MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evpmss Structured version   Visualization version   GIF version

Theorem evpmss 21511
Description: Even permutations are permutations. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
evpmss.s 𝑆 = (SymGrp‘𝐷)
evpmss.p 𝑃 = (Base‘𝑆)
Assertion
Ref Expression
evpmss (pmEven‘𝐷) ⊆ 𝑃

Proof of Theorem evpmss
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . . 6 (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷))
21cnveqd 5872 . . . . 5 (𝑑 = 𝐷(pmSgn‘𝑑) = (pmSgn‘𝐷))
32imaeq1d 6056 . . . 4 (𝑑 = 𝐷 → ((pmSgn‘𝑑) “ {1}) = ((pmSgn‘𝐷) “ {1}))
4 df-evpm 19440 . . . 4 pmEven = (𝑑 ∈ V ↦ ((pmSgn‘𝑑) “ {1}))
5 fvex 6904 . . . . . 6 (pmSgn‘𝐷) ∈ V
65cnvex 7927 . . . . 5 (pmSgn‘𝐷) ∈ V
76imaex 7916 . . . 4 ((pmSgn‘𝐷) “ {1}) ∈ V
83, 4, 7fvmpt 6999 . . 3 (𝐷 ∈ V → (pmEven‘𝐷) = ((pmSgn‘𝐷) “ {1}))
9 cnvimass 6079 . . . 4 ((pmSgn‘𝐷) “ {1}) ⊆ dom (pmSgn‘𝐷)
10 evpmss.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
11 eqid 2727 . . . . . . 7 (pmSgn‘𝐷) = (pmSgn‘𝐷)
12 eqid 2727 . . . . . . 7 (𝑆s dom (pmSgn‘𝐷)) = (𝑆s dom (pmSgn‘𝐷))
13 eqid 2727 . . . . . . 7 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
1410, 11, 12, 13psgnghm 21505 . . . . . 6 (𝐷 ∈ V → (pmSgn‘𝐷) ∈ ((𝑆s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
15 eqid 2727 . . . . . . 7 (Base‘(𝑆s dom (pmSgn‘𝐷))) = (Base‘(𝑆s dom (pmSgn‘𝐷)))
16 eqid 2727 . . . . . . 7 (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
1715, 16ghmf 19167 . . . . . 6 ((pmSgn‘𝐷) ∈ ((𝑆s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (pmSgn‘𝐷):(Base‘(𝑆s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
18 fdm 6725 . . . . . 6 ((pmSgn‘𝐷):(Base‘(𝑆s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) → dom (pmSgn‘𝐷) = (Base‘(𝑆s dom (pmSgn‘𝐷))))
1914, 17, 183syl 18 . . . . 5 (𝐷 ∈ V → dom (pmSgn‘𝐷) = (Base‘(𝑆s dom (pmSgn‘𝐷))))
20 evpmss.p . . . . . 6 𝑃 = (Base‘𝑆)
2112, 20ressbasss 17212 . . . . 5 (Base‘(𝑆s dom (pmSgn‘𝐷))) ⊆ 𝑃
2219, 21eqsstrdi 4032 . . . 4 (𝐷 ∈ V → dom (pmSgn‘𝐷) ⊆ 𝑃)
239, 22sstrid 3989 . . 3 (𝐷 ∈ V → ((pmSgn‘𝐷) “ {1}) ⊆ 𝑃)
248, 23eqsstrd 4016 . 2 (𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃)
25 fvprc 6883 . . 3 𝐷 ∈ V → (pmEven‘𝐷) = ∅)
26 0ss 4392 . . 3 ∅ ⊆ 𝑃
2725, 26eqsstrdi 4032 . 2 𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃)
2824, 27pm2.61i 182 1 (pmEven‘𝐷) ⊆ 𝑃
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1534  wcel 2099  Vcvv 3469  wss 3944  c0 4318  {csn 4624  {cpr 4626  ccnv 5671  dom cdm 5672  cima 5675  wf 6538  cfv 6542  (class class class)co 7414  1c1 11133  -cneg 11469  Basecbs 17173  s cress 17202   GrpHom cghm 19160  SymGrpcsymg 19314  pmSgncpsgn 19437  pmEvencevpm 19438  mulGrpcmgp 20067  fldccnfld 21272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-addf 11211  ax-mulf 11212
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-xor 1506  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-xnn0 12569  df-z 12583  df-dec 12702  df-uz 12847  df-rp 13001  df-fz 13511  df-fzo 13654  df-seq 13993  df-exp 14053  df-hash 14316  df-word 14491  df-lsw 14539  df-concat 14547  df-s1 14572  df-substr 14617  df-pfx 14647  df-splice 14726  df-reverse 14735  df-s2 14825  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17416  df-gsum 17417  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mhm 18733  df-submnd 18734  df-efmnd 18814  df-grp 18886  df-minusg 18887  df-subg 19071  df-ghm 19161  df-gim 19206  df-oppg 19290  df-symg 19315  df-pmtr 19390  df-psgn 19439  df-evpm 19440  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-cring 20169  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-drng 20619  df-cnfld 21273
This theorem is referenced by:  zrhpsgnevpm  21516  evpmodpmf1o  21521  mdetralt  22503  cyc3genpm  32867
  Copyright terms: Public domain W3C validator