Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  evpmss Structured version   Visualization version   GIF version

Theorem evpmss 20706
 Description: Even permutations are permutations. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
evpmss.s 𝑆 = (SymGrp‘𝐷)
evpmss.p 𝑃 = (Base‘𝑆)
Assertion
Ref Expression
evpmss (pmEven‘𝐷) ⊆ 𝑃

Proof of Theorem evpmss
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6646 . . . . . 6 (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷))
21cnveqd 5722 . . . . 5 (𝑑 = 𝐷(pmSgn‘𝑑) = (pmSgn‘𝐷))
32imaeq1d 5904 . . . 4 (𝑑 = 𝐷 → ((pmSgn‘𝑑) “ {1}) = ((pmSgn‘𝐷) “ {1}))
4 df-evpm 18599 . . . 4 pmEven = (𝑑 ∈ V ↦ ((pmSgn‘𝑑) “ {1}))
5 fvex 6659 . . . . . 6 (pmSgn‘𝐷) ∈ V
65cnvex 7608 . . . . 5 (pmSgn‘𝐷) ∈ V
76imaex 7599 . . . 4 ((pmSgn‘𝐷) “ {1}) ∈ V
83, 4, 7fvmpt 6744 . . 3 (𝐷 ∈ V → (pmEven‘𝐷) = ((pmSgn‘𝐷) “ {1}))
9 cnvimass 5925 . . . 4 ((pmSgn‘𝐷) “ {1}) ⊆ dom (pmSgn‘𝐷)
10 evpmss.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
11 eqid 2820 . . . . . . 7 (pmSgn‘𝐷) = (pmSgn‘𝐷)
12 eqid 2820 . . . . . . 7 (𝑆s dom (pmSgn‘𝐷)) = (𝑆s dom (pmSgn‘𝐷))
13 eqid 2820 . . . . . . 7 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
1410, 11, 12, 13psgnghm 20700 . . . . . 6 (𝐷 ∈ V → (pmSgn‘𝐷) ∈ ((𝑆s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
15 eqid 2820 . . . . . . 7 (Base‘(𝑆s dom (pmSgn‘𝐷))) = (Base‘(𝑆s dom (pmSgn‘𝐷)))
16 eqid 2820 . . . . . . 7 (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
1715, 16ghmf 18341 . . . . . 6 ((pmSgn‘𝐷) ∈ ((𝑆s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (pmSgn‘𝐷):(Base‘(𝑆s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
18 fdm 6498 . . . . . 6 ((pmSgn‘𝐷):(Base‘(𝑆s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) → dom (pmSgn‘𝐷) = (Base‘(𝑆s dom (pmSgn‘𝐷))))
1914, 17, 183syl 18 . . . . 5 (𝐷 ∈ V → dom (pmSgn‘𝐷) = (Base‘(𝑆s dom (pmSgn‘𝐷))))
20 evpmss.p . . . . . 6 𝑃 = (Base‘𝑆)
2112, 20ressbasss 16535 . . . . 5 (Base‘(𝑆s dom (pmSgn‘𝐷))) ⊆ 𝑃
2219, 21eqsstrdi 4000 . . . 4 (𝐷 ∈ V → dom (pmSgn‘𝐷) ⊆ 𝑃)
239, 22sstrid 3957 . . 3 (𝐷 ∈ V → ((pmSgn‘𝐷) “ {1}) ⊆ 𝑃)
248, 23eqsstrd 3984 . 2 (𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃)
25 fvprc 6639 . . 3 𝐷 ∈ V → (pmEven‘𝐷) = ∅)
26 0ss 4326 . . 3 ∅ ⊆ 𝑃
2725, 26eqsstrdi 4000 . 2 𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃)
2824, 27pm2.61i 184 1 (pmEven‘𝐷) ⊆ 𝑃
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1537   ∈ wcel 2114  Vcvv 3473   ⊆ wss 3913  ∅c0 4269  {csn 4543  {cpr 4545  ◡ccnv 5530  dom cdm 5531   “ cima 5534  ⟶wf 6327  ‘cfv 6331  (class class class)co 7133  1c1 10516  -cneg 10849  Basecbs 16462   ↾s cress 16463   GrpHom cghm 18334  SymGrpcsymg 18474  pmSgncpsgn 18596  pmEvencevpm 18597  mulGrpcmgp 19218  ℂfldccnfld 20521 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-addf 10594  ax-mulf 10595 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1502  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-ot 4552  df-uni 4815  df-int 4853  df-iun 4897  df-iin 4898  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-tpos 7870  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-2o 8081  df-oadd 8084  df-er 8267  df-map 8386  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-card 9346  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-xnn0 11947  df-z 11961  df-dec 12078  df-uz 12223  df-rp 12369  df-fz 12877  df-fzo 13018  df-seq 13354  df-exp 13415  df-hash 13676  df-word 13847  df-lsw 13895  df-concat 13903  df-s1 13930  df-substr 13983  df-pfx 14013  df-splice 14092  df-reverse 14101  df-s2 14190  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-0g 16694  df-gsum 16695  df-mre 16836  df-mrc 16837  df-acs 16839  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-mhm 17935  df-submnd 17936  df-efmnd 18013  df-grp 18085  df-minusg 18086  df-subg 18255  df-ghm 18335  df-gim 18378  df-oppg 18453  df-symg 18475  df-pmtr 18549  df-psgn 18598  df-evpm 18599  df-cmn 18887  df-abl 18888  df-mgp 19219  df-ur 19231  df-ring 19278  df-cring 19279  df-oppr 19352  df-dvdsr 19370  df-unit 19371  df-invr 19401  df-dvr 19412  df-drng 19480  df-cnfld 20522 This theorem is referenced by:  zrhpsgnevpm  20711  evpmodpmf1o  20716  mdetralt  21193  cyc3genpm  30802
 Copyright terms: Public domain W3C validator