MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evpmss Structured version   Visualization version   GIF version

Theorem evpmss 21605
Description: Even permutations are permutations. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
evpmss.s 𝑆 = (SymGrp‘𝐷)
evpmss.p 𝑃 = (Base‘𝑆)
Assertion
Ref Expression
evpmss (pmEven‘𝐷) ⊆ 𝑃

Proof of Theorem evpmss
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6905 . . . . . 6 (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷))
21cnveqd 5885 . . . . 5 (𝑑 = 𝐷(pmSgn‘𝑑) = (pmSgn‘𝐷))
32imaeq1d 6076 . . . 4 (𝑑 = 𝐷 → ((pmSgn‘𝑑) “ {1}) = ((pmSgn‘𝐷) “ {1}))
4 df-evpm 19511 . . . 4 pmEven = (𝑑 ∈ V ↦ ((pmSgn‘𝑑) “ {1}))
5 fvex 6918 . . . . . 6 (pmSgn‘𝐷) ∈ V
65cnvex 7948 . . . . 5 (pmSgn‘𝐷) ∈ V
76imaex 7937 . . . 4 ((pmSgn‘𝐷) “ {1}) ∈ V
83, 4, 7fvmpt 7015 . . 3 (𝐷 ∈ V → (pmEven‘𝐷) = ((pmSgn‘𝐷) “ {1}))
9 cnvimass 6099 . . . 4 ((pmSgn‘𝐷) “ {1}) ⊆ dom (pmSgn‘𝐷)
10 evpmss.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
11 eqid 2736 . . . . . . 7 (pmSgn‘𝐷) = (pmSgn‘𝐷)
12 eqid 2736 . . . . . . 7 (𝑆s dom (pmSgn‘𝐷)) = (𝑆s dom (pmSgn‘𝐷))
13 eqid 2736 . . . . . . 7 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
1410, 11, 12, 13psgnghm 21599 . . . . . 6 (𝐷 ∈ V → (pmSgn‘𝐷) ∈ ((𝑆s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
15 eqid 2736 . . . . . . 7 (Base‘(𝑆s dom (pmSgn‘𝐷))) = (Base‘(𝑆s dom (pmSgn‘𝐷)))
16 eqid 2736 . . . . . . 7 (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
1715, 16ghmf 19239 . . . . . 6 ((pmSgn‘𝐷) ∈ ((𝑆s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (pmSgn‘𝐷):(Base‘(𝑆s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
18 fdm 6744 . . . . . 6 ((pmSgn‘𝐷):(Base‘(𝑆s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) → dom (pmSgn‘𝐷) = (Base‘(𝑆s dom (pmSgn‘𝐷))))
1914, 17, 183syl 18 . . . . 5 (𝐷 ∈ V → dom (pmSgn‘𝐷) = (Base‘(𝑆s dom (pmSgn‘𝐷))))
20 evpmss.p . . . . . 6 𝑃 = (Base‘𝑆)
2112, 20ressbasss 17285 . . . . 5 (Base‘(𝑆s dom (pmSgn‘𝐷))) ⊆ 𝑃
2219, 21eqsstrdi 4027 . . . 4 (𝐷 ∈ V → dom (pmSgn‘𝐷) ⊆ 𝑃)
239, 22sstrid 3994 . . 3 (𝐷 ∈ V → ((pmSgn‘𝐷) “ {1}) ⊆ 𝑃)
248, 23eqsstrd 4017 . 2 (𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃)
25 fvprc 6897 . . 3 𝐷 ∈ V → (pmEven‘𝐷) = ∅)
26 0ss 4399 . . 3 ∅ ⊆ 𝑃
2725, 26eqsstrdi 4027 . 2 𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃)
2824, 27pm2.61i 182 1 (pmEven‘𝐷) ⊆ 𝑃
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2107  Vcvv 3479  wss 3950  c0 4332  {csn 4625  {cpr 4627  ccnv 5683  dom cdm 5684  cima 5687  wf 6556  cfv 6560  (class class class)co 7432  1c1 11157  -cneg 11494  Basecbs 17248  s cress 17275   GrpHom cghm 19231  SymGrpcsymg 19387  pmSgncpsgn 19508  pmEvencevpm 19509  mulGrpcmgp 20138  fldccnfld 21365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1511  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-xnn0 12602  df-z 12616  df-dec 12736  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-word 14554  df-lsw 14602  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710  df-splice 14789  df-reverse 14798  df-s2 14888  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-efmnd 18883  df-grp 18955  df-minusg 18956  df-subg 19142  df-ghm 19232  df-gim 19278  df-oppg 19365  df-symg 19388  df-pmtr 19461  df-psgn 19510  df-evpm 19511  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-drng 20732  df-cnfld 21366
This theorem is referenced by:  zrhpsgnevpm  21610  evpmodpmf1o  21615  mdetralt  22615  cyc3genpm  33173
  Copyright terms: Public domain W3C validator