| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evpmss | Structured version Visualization version GIF version | ||
| Description: Even permutations are permutations. (Contributed by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| evpmss.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| evpmss.p | ⊢ 𝑃 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| evpmss | ⊢ (pmEven‘𝐷) ⊆ 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
| 2 | 1 | cnveqd 5839 | . . . . 5 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡(pmSgn‘𝐷)) |
| 3 | 2 | imaeq1d 6030 | . . . 4 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡(pmSgn‘𝐷) “ {1})) |
| 4 | df-evpm 19422 | . . . 4 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
| 5 | fvex 6871 | . . . . . 6 ⊢ (pmSgn‘𝐷) ∈ V | |
| 6 | 5 | cnvex 7901 | . . . . 5 ⊢ ◡(pmSgn‘𝐷) ∈ V |
| 7 | 6 | imaex 7890 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ∈ V |
| 8 | 3, 4, 7 | fvmpt 6968 | . . 3 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
| 9 | cnvimass 6053 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ⊆ dom (pmSgn‘𝐷) | |
| 10 | evpmss.s | . . . . . . 7 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 11 | eqid 2729 | . . . . . . 7 ⊢ (pmSgn‘𝐷) = (pmSgn‘𝐷) | |
| 12 | eqid 2729 | . . . . . . 7 ⊢ (𝑆 ↾s dom (pmSgn‘𝐷)) = (𝑆 ↾s dom (pmSgn‘𝐷)) | |
| 13 | eqid 2729 | . . . . . . 7 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 14 | 10, 11, 12, 13 | psgnghm 21489 | . . . . . 6 ⊢ (𝐷 ∈ V → (pmSgn‘𝐷) ∈ ((𝑆 ↾s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (Base‘(𝑆 ↾s dom (pmSgn‘𝐷))) = (Base‘(𝑆 ↾s dom (pmSgn‘𝐷))) | |
| 16 | eqid 2729 | . . . . . . 7 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
| 17 | 15, 16 | ghmf 19152 | . . . . . 6 ⊢ ((pmSgn‘𝐷) ∈ ((𝑆 ↾s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (pmSgn‘𝐷):(Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 18 | fdm 6697 | . . . . . 6 ⊢ ((pmSgn‘𝐷):(Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) → dom (pmSgn‘𝐷) = (Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))) | |
| 19 | 14, 17, 18 | 3syl 18 | . . . . 5 ⊢ (𝐷 ∈ V → dom (pmSgn‘𝐷) = (Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))) |
| 20 | evpmss.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝑆) | |
| 21 | 12, 20 | ressbasss 17209 | . . . . 5 ⊢ (Base‘(𝑆 ↾s dom (pmSgn‘𝐷))) ⊆ 𝑃 |
| 22 | 19, 21 | eqsstrdi 3991 | . . . 4 ⊢ (𝐷 ∈ V → dom (pmSgn‘𝐷) ⊆ 𝑃) |
| 23 | 9, 22 | sstrid 3958 | . . 3 ⊢ (𝐷 ∈ V → (◡(pmSgn‘𝐷) “ {1}) ⊆ 𝑃) |
| 24 | 8, 23 | eqsstrd 3981 | . 2 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃) |
| 25 | fvprc 6850 | . . 3 ⊢ (¬ 𝐷 ∈ V → (pmEven‘𝐷) = ∅) | |
| 26 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ 𝑃 | |
| 27 | 25, 26 | eqsstrdi 3991 | . 2 ⊢ (¬ 𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃) |
| 28 | 24, 27 | pm2.61i 182 | 1 ⊢ (pmEven‘𝐷) ⊆ 𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 {csn 4589 {cpr 4591 ◡ccnv 5637 dom cdm 5638 “ cima 5641 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 1c1 11069 -cneg 11406 Basecbs 17179 ↾s cress 17200 GrpHom cghm 19144 SymGrpcsymg 19299 pmSgncpsgn 19419 pmEvencevpm 19420 mulGrpcmgp 20049 ℂfldccnfld 21264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-word 14479 df-lsw 14528 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-splice 14715 df-reverse 14724 df-s2 14814 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-gsum 17405 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-efmnd 18796 df-grp 18868 df-minusg 18869 df-subg 19055 df-ghm 19145 df-gim 19191 df-oppg 19278 df-symg 19300 df-pmtr 19372 df-psgn 19421 df-evpm 19422 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-drng 20640 df-cnfld 21265 |
| This theorem is referenced by: zrhpsgnevpm 21500 evpmodpmf1o 21505 mdetralt 22495 cyc3genpm 33109 |
| Copyright terms: Public domain | W3C validator |