| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evpmss | Structured version Visualization version GIF version | ||
| Description: Even permutations are permutations. (Contributed by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| evpmss.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| evpmss.p | ⊢ 𝑃 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| evpmss | ⊢ (pmEven‘𝐷) ⊆ 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6830 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
| 2 | 1 | cnveqd 5821 | . . . . 5 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡(pmSgn‘𝐷)) |
| 3 | 2 | imaeq1d 6014 | . . . 4 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡(pmSgn‘𝐷) “ {1})) |
| 4 | df-evpm 19408 | . . . 4 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
| 5 | fvex 6843 | . . . . . 6 ⊢ (pmSgn‘𝐷) ∈ V | |
| 6 | 5 | cnvex 7863 | . . . . 5 ⊢ ◡(pmSgn‘𝐷) ∈ V |
| 7 | 6 | imaex 7852 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ∈ V |
| 8 | 3, 4, 7 | fvmpt 6937 | . . 3 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
| 9 | cnvimass 6037 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ⊆ dom (pmSgn‘𝐷) | |
| 10 | evpmss.s | . . . . . . 7 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 11 | eqid 2733 | . . . . . . 7 ⊢ (pmSgn‘𝐷) = (pmSgn‘𝐷) | |
| 12 | eqid 2733 | . . . . . . 7 ⊢ (𝑆 ↾s dom (pmSgn‘𝐷)) = (𝑆 ↾s dom (pmSgn‘𝐷)) | |
| 13 | eqid 2733 | . . . . . . 7 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 14 | 10, 11, 12, 13 | psgnghm 21521 | . . . . . 6 ⊢ (𝐷 ∈ V → (pmSgn‘𝐷) ∈ ((𝑆 ↾s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 15 | eqid 2733 | . . . . . . 7 ⊢ (Base‘(𝑆 ↾s dom (pmSgn‘𝐷))) = (Base‘(𝑆 ↾s dom (pmSgn‘𝐷))) | |
| 16 | eqid 2733 | . . . . . . 7 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
| 17 | 15, 16 | ghmf 19136 | . . . . . 6 ⊢ ((pmSgn‘𝐷) ∈ ((𝑆 ↾s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (pmSgn‘𝐷):(Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 18 | fdm 6667 | . . . . . 6 ⊢ ((pmSgn‘𝐷):(Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) → dom (pmSgn‘𝐷) = (Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))) | |
| 19 | 14, 17, 18 | 3syl 18 | . . . . 5 ⊢ (𝐷 ∈ V → dom (pmSgn‘𝐷) = (Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))) |
| 20 | evpmss.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝑆) | |
| 21 | 12, 20 | ressbasss 17154 | . . . . 5 ⊢ (Base‘(𝑆 ↾s dom (pmSgn‘𝐷))) ⊆ 𝑃 |
| 22 | 19, 21 | eqsstrdi 3975 | . . . 4 ⊢ (𝐷 ∈ V → dom (pmSgn‘𝐷) ⊆ 𝑃) |
| 23 | 9, 22 | sstrid 3942 | . . 3 ⊢ (𝐷 ∈ V → (◡(pmSgn‘𝐷) “ {1}) ⊆ 𝑃) |
| 24 | 8, 23 | eqsstrd 3965 | . 2 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃) |
| 25 | fvprc 6822 | . . 3 ⊢ (¬ 𝐷 ∈ V → (pmEven‘𝐷) = ∅) | |
| 26 | 0ss 4349 | . . 3 ⊢ ∅ ⊆ 𝑃 | |
| 27 | 25, 26 | eqsstrdi 3975 | . 2 ⊢ (¬ 𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃) |
| 28 | 24, 27 | pm2.61i 182 | 1 ⊢ (pmEven‘𝐷) ⊆ 𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 {csn 4577 {cpr 4579 ◡ccnv 5620 dom cdm 5621 “ cima 5624 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 1c1 11016 -cneg 11354 Basecbs 17124 ↾s cress 17145 GrpHom cghm 19128 SymGrpcsymg 19285 pmSgncpsgn 19405 pmEvencevpm 19406 mulGrpcmgp 20062 ℂfldccnfld 21295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-addf 11094 ax-mulf 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-tpos 8164 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-xnn0 12464 df-z 12478 df-dec 12597 df-uz 12741 df-rp 12895 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-word 14425 df-lsw 14474 df-concat 14482 df-s1 14508 df-substr 14553 df-pfx 14583 df-splice 14661 df-reverse 14670 df-s2 14759 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-starv 17180 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-0g 17349 df-gsum 17350 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-submnd 18696 df-efmnd 18781 df-grp 18853 df-minusg 18854 df-subg 19040 df-ghm 19129 df-gim 19175 df-oppg 19262 df-symg 19286 df-pmtr 19358 df-psgn 19407 df-evpm 19408 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-cring 20158 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 df-dvr 20323 df-drng 20650 df-cnfld 21296 |
| This theorem is referenced by: zrhpsgnevpm 21532 evpmodpmf1o 21537 mdetralt 22526 cyc3genpm 33130 |
| Copyright terms: Public domain | W3C validator |