Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evpmss | Structured version Visualization version GIF version |
Description: Even permutations are permutations. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
evpmss.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
evpmss.p | ⊢ 𝑃 = (Base‘𝑆) |
Ref | Expression |
---|---|
evpmss | ⊢ (pmEven‘𝐷) ⊆ 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
2 | 1 | cnveqd 5773 | . . . . 5 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡(pmSgn‘𝐷)) |
3 | 2 | imaeq1d 5957 | . . . 4 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡(pmSgn‘𝐷) “ {1})) |
4 | df-evpm 19015 | . . . 4 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
5 | fvex 6769 | . . . . . 6 ⊢ (pmSgn‘𝐷) ∈ V | |
6 | 5 | cnvex 7746 | . . . . 5 ⊢ ◡(pmSgn‘𝐷) ∈ V |
7 | 6 | imaex 7737 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ∈ V |
8 | 3, 4, 7 | fvmpt 6857 | . . 3 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
9 | cnvimass 5978 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ⊆ dom (pmSgn‘𝐷) | |
10 | evpmss.s | . . . . . . 7 ⊢ 𝑆 = (SymGrp‘𝐷) | |
11 | eqid 2738 | . . . . . . 7 ⊢ (pmSgn‘𝐷) = (pmSgn‘𝐷) | |
12 | eqid 2738 | . . . . . . 7 ⊢ (𝑆 ↾s dom (pmSgn‘𝐷)) = (𝑆 ↾s dom (pmSgn‘𝐷)) | |
13 | eqid 2738 | . . . . . . 7 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
14 | 10, 11, 12, 13 | psgnghm 20697 | . . . . . 6 ⊢ (𝐷 ∈ V → (pmSgn‘𝐷) ∈ ((𝑆 ↾s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
15 | eqid 2738 | . . . . . . 7 ⊢ (Base‘(𝑆 ↾s dom (pmSgn‘𝐷))) = (Base‘(𝑆 ↾s dom (pmSgn‘𝐷))) | |
16 | eqid 2738 | . . . . . . 7 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
17 | 15, 16 | ghmf 18753 | . . . . . 6 ⊢ ((pmSgn‘𝐷) ∈ ((𝑆 ↾s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (pmSgn‘𝐷):(Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
18 | fdm 6593 | . . . . . 6 ⊢ ((pmSgn‘𝐷):(Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) → dom (pmSgn‘𝐷) = (Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))) | |
19 | 14, 17, 18 | 3syl 18 | . . . . 5 ⊢ (𝐷 ∈ V → dom (pmSgn‘𝐷) = (Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))) |
20 | evpmss.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝑆) | |
21 | 12, 20 | ressbasss 16876 | . . . . 5 ⊢ (Base‘(𝑆 ↾s dom (pmSgn‘𝐷))) ⊆ 𝑃 |
22 | 19, 21 | eqsstrdi 3971 | . . . 4 ⊢ (𝐷 ∈ V → dom (pmSgn‘𝐷) ⊆ 𝑃) |
23 | 9, 22 | sstrid 3928 | . . 3 ⊢ (𝐷 ∈ V → (◡(pmSgn‘𝐷) “ {1}) ⊆ 𝑃) |
24 | 8, 23 | eqsstrd 3955 | . 2 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃) |
25 | fvprc 6748 | . . 3 ⊢ (¬ 𝐷 ∈ V → (pmEven‘𝐷) = ∅) | |
26 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ 𝑃 | |
27 | 25, 26 | eqsstrdi 3971 | . 2 ⊢ (¬ 𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃) |
28 | 24, 27 | pm2.61i 182 | 1 ⊢ (pmEven‘𝐷) ⊆ 𝑃 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 {csn 4558 {cpr 4560 ◡ccnv 5579 dom cdm 5580 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 1c1 10803 -cneg 11136 Basecbs 16840 ↾s cress 16867 GrpHom cghm 18746 SymGrpcsymg 18889 pmSgncpsgn 19012 pmEvencevpm 19013 mulGrpcmgp 19635 ℂfldccnfld 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-lsw 14194 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-splice 14391 df-reverse 14400 df-s2 14489 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-efmnd 18423 df-grp 18495 df-minusg 18496 df-subg 18667 df-ghm 18747 df-gim 18790 df-oppg 18865 df-symg 18890 df-pmtr 18965 df-psgn 19014 df-evpm 19015 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-cnfld 20511 |
This theorem is referenced by: zrhpsgnevpm 20708 evpmodpmf1o 20713 mdetralt 21665 cyc3genpm 31321 |
Copyright terms: Public domain | W3C validator |