Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextfld1 | Structured version Visualization version GIF version |
Description: A field extension is only defined if the extension is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
fldextfld1 | ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabssxp 5679 | . . 3 ⊢ {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} ⊆ (Field × Field) | |
2 | df-br 5075 | . . . . 5 ⊢ (𝐸/FldExt𝐹 ↔ 〈𝐸, 𝐹〉 ∈ /FldExt) | |
3 | 2 | biimpi 215 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ /FldExt) |
4 | df-fldext 31717 | . . . 4 ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} | |
5 | 3, 4 | eleqtrdi 2849 | . . 3 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}) |
6 | 1, 5 | sselid 3919 | . 2 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ (Field × Field)) |
7 | opelxp1 5630 | . 2 ⊢ (〈𝐸, 𝐹〉 ∈ (Field × Field) → 𝐸 ∈ Field) | |
8 | 6, 7 | syl 17 | 1 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 〈cop 4567 class class class wbr 5074 {copab 5136 × cxp 5587 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 Fieldcfield 19992 SubRingcsubrg 20020 /FldExtcfldext 31713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-fldext 31717 |
This theorem is referenced by: fldextsubrg 31726 fldextress 31727 brfinext 31728 fldextsralvec 31730 extdgcl 31731 extdggt0 31732 fldexttr 31733 extdgmul 31736 extdg1id 31738 |
Copyright terms: Public domain | W3C validator |