Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextfld1 Structured version   Visualization version   GIF version

Theorem fldextfld1 33541
Description: A field extension is only defined if the extension is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
fldextfld1 (𝐸/FldExt𝐹𝐸 ∈ Field)

Proof of Theorem fldextfld1
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opabssxp 5764 . . 3 {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} ⊆ (Field × Field)
2 df-br 5144 . . . . 5 (𝐸/FldExt𝐹 ↔ ⟨𝐸, 𝐹⟩ ∈ /FldExt)
32biimpi 215 . . . 4 (𝐸/FldExt𝐹 → ⟨𝐸, 𝐹⟩ ∈ /FldExt)
4 df-fldext 33534 . . . 4 /FldExt = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}
53, 4eleqtrdi 2836 . . 3 (𝐸/FldExt𝐹 → ⟨𝐸, 𝐹⟩ ∈ {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))})
61, 5sselid 3976 . 2 (𝐸/FldExt𝐹 → ⟨𝐸, 𝐹⟩ ∈ (Field × Field))
7 opelxp1 5714 . 2 (⟨𝐸, 𝐹⟩ ∈ (Field × Field) → 𝐸 ∈ Field)
86, 7syl 17 1 (𝐸/FldExt𝐹𝐸 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cop 4629   class class class wbr 5143  {copab 5205   × cxp 5670  cfv 6543  (class class class)co 7413  Basecbs 17205  s cress 17234  SubRingcsubrg 20544  Fieldcfield 20701  /FldExtcfldext 33530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5144  df-opab 5206  df-xp 5678  df-fldext 33534
This theorem is referenced by:  fldextsubrg  33543  fldextress  33544  brfinext  33545  fldextsralvec  33547  extdgcl  33548  extdggt0  33549  fldexttr  33550  extdgmul  33553  extdg1id  33555
  Copyright terms: Public domain W3C validator