Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextfld1 Structured version   Visualization version   GIF version

Theorem fldextfld1 31724
Description: A field extension is only defined if the extension is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
fldextfld1 (𝐸/FldExt𝐹𝐸 ∈ Field)

Proof of Theorem fldextfld1
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opabssxp 5679 . . 3 {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} ⊆ (Field × Field)
2 df-br 5075 . . . . 5 (𝐸/FldExt𝐹 ↔ ⟨𝐸, 𝐹⟩ ∈ /FldExt)
32biimpi 215 . . . 4 (𝐸/FldExt𝐹 → ⟨𝐸, 𝐹⟩ ∈ /FldExt)
4 df-fldext 31717 . . . 4 /FldExt = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}
53, 4eleqtrdi 2849 . . 3 (𝐸/FldExt𝐹 → ⟨𝐸, 𝐹⟩ ∈ {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))})
61, 5sselid 3919 . 2 (𝐸/FldExt𝐹 → ⟨𝐸, 𝐹⟩ ∈ (Field × Field))
7 opelxp1 5630 . 2 (⟨𝐸, 𝐹⟩ ∈ (Field × Field) → 𝐸 ∈ Field)
86, 7syl 17 1 (𝐸/FldExt𝐹𝐸 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cop 4567   class class class wbr 5074  {copab 5136   × cxp 5587  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  Fieldcfield 19992  SubRingcsubrg 20020  /FldExtcfldext 31713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-fldext 31717
This theorem is referenced by:  fldextsubrg  31726  fldextress  31727  brfinext  31728  fldextsralvec  31730  extdgcl  31731  extdggt0  31732  fldexttr  31733  extdgmul  31736  extdg1id  31738
  Copyright terms: Public domain W3C validator