![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextfld1 | Structured version Visualization version GIF version |
Description: A field extension is only defined if the extension is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
fldextfld1 | ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabssxp 5781 | . . 3 ⊢ {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} ⊆ (Field × Field) | |
2 | df-br 5149 | . . . . 5 ⊢ (𝐸/FldExt𝐹 ↔ 〈𝐸, 𝐹〉 ∈ /FldExt) | |
3 | 2 | biimpi 216 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ /FldExt) |
4 | df-fldext 33670 | . . . 4 ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} | |
5 | 3, 4 | eleqtrdi 2849 | . . 3 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}) |
6 | 1, 5 | sselid 3993 | . 2 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ (Field × Field)) |
7 | opelxp1 5731 | . 2 ⊢ (〈𝐸, 𝐹〉 ∈ (Field × Field) → 𝐸 ∈ Field) | |
8 | 6, 7 | syl 17 | 1 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 〈cop 4637 class class class wbr 5148 {copab 5210 × cxp 5687 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾s cress 17274 SubRingcsubrg 20586 Fieldcfield 20747 /FldExtcfldext 33666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-fldext 33670 |
This theorem is referenced by: fldextsubrg 33679 fldextress 33680 brfinext 33681 fldextsralvec 33683 extdgcl 33684 extdggt0 33685 fldexttr 33686 extdgmul 33689 extdg1id 33691 |
Copyright terms: Public domain | W3C validator |