![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextfld2 | Structured version Visualization version GIF version |
Description: A field extension is only defined if the subfield is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
fldextfld2 | β’ (πΈ/FldExtπΉ β πΉ β Field) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabssxp 5766 | . . 3 β’ {β¨π, πβ© β£ ((π β Field β§ π β Field) β§ (π = (π βΎs (Baseβπ)) β§ (Baseβπ) β (SubRingβπ)))} β (Field Γ Field) | |
2 | df-br 5148 | . . . . 5 β’ (πΈ/FldExtπΉ β β¨πΈ, πΉβ© β /FldExt) | |
3 | 2 | biimpi 215 | . . . 4 β’ (πΈ/FldExtπΉ β β¨πΈ, πΉβ© β /FldExt) |
4 | df-fldext 32709 | . . . 4 β’ /FldExt = {β¨π, πβ© β£ ((π β Field β§ π β Field) β§ (π = (π βΎs (Baseβπ)) β§ (Baseβπ) β (SubRingβπ)))} | |
5 | 3, 4 | eleqtrdi 2843 | . . 3 β’ (πΈ/FldExtπΉ β β¨πΈ, πΉβ© β {β¨π, πβ© β£ ((π β Field β§ π β Field) β§ (π = (π βΎs (Baseβπ)) β§ (Baseβπ) β (SubRingβπ)))}) |
6 | 1, 5 | sselid 3979 | . 2 β’ (πΈ/FldExtπΉ β β¨πΈ, πΉβ© β (Field Γ Field)) |
7 | opelxp2 5717 | . 2 β’ (β¨πΈ, πΉβ© β (Field Γ Field) β πΉ β Field) | |
8 | 6, 7 | syl 17 | 1 β’ (πΈ/FldExtπΉ β πΉ β Field) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β¨cop 4633 class class class wbr 5147 {copab 5209 Γ cxp 5673 βcfv 6540 (class class class)co 7405 Basecbs 17140 βΎs cress 17169 Fieldcfield 20308 SubRingcsubrg 20351 /FldExtcfldext 32705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-fldext 32709 |
This theorem is referenced by: fldextsubrg 32718 fldextress 32719 brfinext 32720 fldextsralvec 32722 extdgcl 32723 extdggt0 32724 fldexttr 32725 extdgmul 32728 extdg1id 32730 extdg1b 32731 |
Copyright terms: Public domain | W3C validator |