Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextfld2 | Structured version Visualization version GIF version |
Description: A field extension is only defined if the subfield is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
fldextfld2 | ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabssxp 5669 | . . 3 ⊢ {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} ⊆ (Field × Field) | |
2 | df-br 5071 | . . . . 5 ⊢ (𝐸/FldExt𝐹 ↔ 〈𝐸, 𝐹〉 ∈ /FldExt) | |
3 | 2 | biimpi 215 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ /FldExt) |
4 | df-fldext 31619 | . . . 4 ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} | |
5 | 3, 4 | eleqtrdi 2849 | . . 3 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}) |
6 | 1, 5 | sselid 3915 | . 2 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ (Field × Field)) |
7 | opelxp2 5622 | . 2 ⊢ (〈𝐸, 𝐹〉 ∈ (Field × Field) → 𝐹 ∈ Field) | |
8 | 6, 7 | syl 17 | 1 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 {copab 5132 × cxp 5578 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 Fieldcfield 19907 SubRingcsubrg 19935 /FldExtcfldext 31615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-fldext 31619 |
This theorem is referenced by: fldextsubrg 31628 fldextress 31629 brfinext 31630 fldextsralvec 31632 extdgcl 31633 extdggt0 31634 fldexttr 31635 extdgmul 31638 extdg1id 31640 extdg1b 31641 |
Copyright terms: Public domain | W3C validator |