Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextfld2 Structured version   Visualization version   GIF version

Theorem fldextfld2 33650
Description: A field extension is only defined if the subfield is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
fldextfld2 (𝐸/FldExt𝐹𝐹 ∈ Field)

Proof of Theorem fldextfld2
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opabssxp 5733 . . 3 {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} ⊆ (Field × Field)
2 df-br 5110 . . . . 5 (𝐸/FldExt𝐹 ↔ ⟨𝐸, 𝐹⟩ ∈ /FldExt)
32biimpi 216 . . . 4 (𝐸/FldExt𝐹 → ⟨𝐸, 𝐹⟩ ∈ /FldExt)
4 df-fldext 33643 . . . 4 /FldExt = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}
53, 4eleqtrdi 2839 . . 3 (𝐸/FldExt𝐹 → ⟨𝐸, 𝐹⟩ ∈ {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))})
61, 5sselid 3946 . 2 (𝐸/FldExt𝐹 → ⟨𝐸, 𝐹⟩ ∈ (Field × Field))
7 opelxp2 5683 . 2 (⟨𝐸, 𝐹⟩ ∈ (Field × Field) → 𝐹 ∈ Field)
86, 7syl 17 1 (𝐸/FldExt𝐹𝐹 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4597   class class class wbr 5109  {copab 5171   × cxp 5638  cfv 6513  (class class class)co 7389  Basecbs 17185  s cress 17206  SubRingcsubrg 20484  Fieldcfield 20645  /FldExtcfldext 33640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-fldext 33643
This theorem is referenced by:  fldextsubrg  33651  fldextress  33653  brfinext  33654  fldextsdrg  33656  fldextsralvec  33657  extdgcl  33658  extdggt0  33659  fldexttr  33660  extdgmul  33665  extdg1id  33667  extdg1b  33668
  Copyright terms: Public domain W3C validator