Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextfld2 Structured version   Visualization version   GIF version

Theorem fldextfld2 32717
Description: A field extension is only defined if the subfield is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
fldextfld2 (𝐸/FldExt𝐹 β†’ 𝐹 ∈ Field)

Proof of Theorem fldextfld2
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opabssxp 5766 . . 3 {βŸ¨π‘’, π‘“βŸ© ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 β†Ύs (Baseβ€˜π‘“)) ∧ (Baseβ€˜π‘“) ∈ (SubRingβ€˜π‘’)))} βŠ† (Field Γ— Field)
2 df-br 5148 . . . . 5 (𝐸/FldExt𝐹 ↔ ⟨𝐸, 𝐹⟩ ∈ /FldExt)
32biimpi 215 . . . 4 (𝐸/FldExt𝐹 β†’ ⟨𝐸, 𝐹⟩ ∈ /FldExt)
4 df-fldext 32709 . . . 4 /FldExt = {βŸ¨π‘’, π‘“βŸ© ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 β†Ύs (Baseβ€˜π‘“)) ∧ (Baseβ€˜π‘“) ∈ (SubRingβ€˜π‘’)))}
53, 4eleqtrdi 2843 . . 3 (𝐸/FldExt𝐹 β†’ ⟨𝐸, 𝐹⟩ ∈ {βŸ¨π‘’, π‘“βŸ© ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 β†Ύs (Baseβ€˜π‘“)) ∧ (Baseβ€˜π‘“) ∈ (SubRingβ€˜π‘’)))})
61, 5sselid 3979 . 2 (𝐸/FldExt𝐹 β†’ ⟨𝐸, 𝐹⟩ ∈ (Field Γ— Field))
7 opelxp2 5717 . 2 (⟨𝐸, 𝐹⟩ ∈ (Field Γ— Field) β†’ 𝐹 ∈ Field)
86, 7syl 17 1 (𝐸/FldExt𝐹 β†’ 𝐹 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βŸ¨cop 4633   class class class wbr 5147  {copab 5209   Γ— cxp 5673  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140   β†Ύs cress 17169  Fieldcfield 20308  SubRingcsubrg 20351  /FldExtcfldext 32705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-fldext 32709
This theorem is referenced by:  fldextsubrg  32718  fldextress  32719  brfinext  32720  fldextsralvec  32722  extdgcl  32723  extdggt0  32724  fldexttr  32725  extdgmul  32728  extdg1id  32730  extdg1b  32731
  Copyright terms: Public domain W3C validator