![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextfld2 | Structured version Visualization version GIF version |
Description: A field extension is only defined if the subfield is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
fldextfld2 | ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabssxp 5792 | . . 3 ⊢ {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} ⊆ (Field × Field) | |
2 | df-br 5167 | . . . . 5 ⊢ (𝐸/FldExt𝐹 ↔ 〈𝐸, 𝐹〉 ∈ /FldExt) | |
3 | 2 | biimpi 216 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ /FldExt) |
4 | df-fldext 33655 | . . . 4 ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} | |
5 | 3, 4 | eleqtrdi 2854 | . . 3 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}) |
6 | 1, 5 | sselid 4006 | . 2 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ (Field × Field)) |
7 | opelxp2 5743 | . 2 ⊢ (〈𝐸, 𝐹〉 ∈ (Field × Field) → 𝐹 ∈ Field) | |
8 | 6, 7 | syl 17 | 1 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 {copab 5228 × cxp 5698 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 SubRingcsubrg 20595 Fieldcfield 20752 /FldExtcfldext 33651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-fldext 33655 |
This theorem is referenced by: fldextsubrg 33664 fldextress 33665 brfinext 33666 fldextsralvec 33668 extdgcl 33669 extdggt0 33670 fldexttr 33671 extdgmul 33674 extdg1id 33676 extdg1b 33677 |
Copyright terms: Public domain | W3C validator |