Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextfld2 Structured version   Visualization version   GIF version

Theorem fldextfld2 31627
Description: A field extension is only defined if the subfield is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
fldextfld2 (𝐸/FldExt𝐹𝐹 ∈ Field)

Proof of Theorem fldextfld2
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opabssxp 5669 . . 3 {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} ⊆ (Field × Field)
2 df-br 5071 . . . . 5 (𝐸/FldExt𝐹 ↔ ⟨𝐸, 𝐹⟩ ∈ /FldExt)
32biimpi 215 . . . 4 (𝐸/FldExt𝐹 → ⟨𝐸, 𝐹⟩ ∈ /FldExt)
4 df-fldext 31619 . . . 4 /FldExt = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}
53, 4eleqtrdi 2849 . . 3 (𝐸/FldExt𝐹 → ⟨𝐸, 𝐹⟩ ∈ {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))})
61, 5sselid 3915 . 2 (𝐸/FldExt𝐹 → ⟨𝐸, 𝐹⟩ ∈ (Field × Field))
7 opelxp2 5622 . 2 (⟨𝐸, 𝐹⟩ ∈ (Field × Field) → 𝐹 ∈ Field)
86, 7syl 17 1 (𝐸/FldExt𝐹𝐹 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070  {copab 5132   × cxp 5578  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  Fieldcfield 19907  SubRingcsubrg 19935  /FldExtcfldext 31615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-fldext 31619
This theorem is referenced by:  fldextsubrg  31628  fldextress  31629  brfinext  31630  fldextsralvec  31632  extdgcl  31633  extdggt0  31634  fldexttr  31635  extdgmul  31638  extdg1id  31640  extdg1b  31641
  Copyright terms: Public domain W3C validator