| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextfld2 | Structured version Visualization version GIF version | ||
| Description: A field extension is only defined if the subfield is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| fldextfld2 | ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabssxp 5706 | . . 3 ⊢ {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} ⊆ (Field × Field) | |
| 2 | df-br 5090 | . . . . 5 ⊢ (𝐸/FldExt𝐹 ↔ 〈𝐸, 𝐹〉 ∈ /FldExt) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ /FldExt) |
| 4 | df-fldext 33644 | . . . 4 ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} | |
| 5 | 3, 4 | eleqtrdi 2839 | . . 3 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}) |
| 6 | 1, 5 | sselid 3930 | . 2 ⊢ (𝐸/FldExt𝐹 → 〈𝐸, 𝐹〉 ∈ (Field × Field)) |
| 7 | opelxp2 5657 | . 2 ⊢ (〈𝐸, 𝐹〉 ∈ (Field × Field) → 𝐹 ∈ Field) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 〈cop 4580 class class class wbr 5089 {copab 5151 × cxp 5612 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 ↾s cress 17133 SubRingcsubrg 20477 Fieldcfield 20638 /FldExtcfldext 33641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-fldext 33644 |
| This theorem is referenced by: fldextsubrg 33652 fldextress 33654 brfinext 33655 fldextsdrg 33657 fldextsralvec 33658 extdgcl 33659 extdggt0 33660 fldexttr 33661 extdgmul 33666 extdg1id 33669 extdg1b 33670 finextalg 33701 |
| Copyright terms: Public domain | W3C validator |