| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brfldext | Structured version Visualization version GIF version | ||
| Description: The field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| brfldext | ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑒 = 𝐸) | |
| 2 | 1 | eleq1d 2819 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒 ∈ Field ↔ 𝐸 ∈ Field)) |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
| 4 | 3 | eleq1d 2819 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑓 ∈ Field ↔ 𝐹 ∈ Field)) |
| 5 | 2, 4 | anbi12d 632 | . . . 4 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ↔ (𝐸 ∈ Field ∧ 𝐹 ∈ Field))) |
| 6 | 3 | fveq2d 6880 | . . . . . . 7 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹)) |
| 7 | 1, 6 | oveq12d 7423 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒 ↾s (Base‘𝑓)) = (𝐸 ↾s (Base‘𝐹))) |
| 8 | 3, 7 | eqeq12d 2751 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑓 = (𝑒 ↾s (Base‘𝑓)) ↔ 𝐹 = (𝐸 ↾s (Base‘𝐹)))) |
| 9 | 1 | fveq2d 6880 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (SubRing‘𝑒) = (SubRing‘𝐸)) |
| 10 | 6, 9 | eleq12d 2828 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((Base‘𝑓) ∈ (SubRing‘𝑒) ↔ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
| 11 | 8, 10 | anbi12d 632 | . . . 4 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)) ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
| 12 | 5, 11 | anbi12d 632 | . . 3 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒))) ↔ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) ∧ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))) |
| 13 | df-fldext 33682 | . . 3 ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} | |
| 14 | 12, 13 | brabga 5509 | . 2 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) ∧ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))) |
| 15 | 14 | bianabs 541 | 1 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 SubRingcsubrg 20529 Fieldcfield 20690 /FldExtcfldext 33678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-iota 6484 df-fv 6539 df-ov 7408 df-fldext 33682 |
| This theorem is referenced by: ccfldextrr 33688 fldextsubrg 33691 sdrgfldext 33692 fldextress 33693 fldexttr 33700 fldextid 33701 fldsdrgfldext 33703 extdgmul 33705 fldgenfldext 33709 fldextrspunlem1 33716 algextdeglem4 33754 |
| Copyright terms: Public domain | W3C validator |