| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brfldext | Structured version Visualization version GIF version | ||
| Description: The field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| brfldext | ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑒 = 𝐸) | |
| 2 | 1 | eleq1d 2818 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒 ∈ Field ↔ 𝐸 ∈ Field)) |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
| 4 | 3 | eleq1d 2818 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑓 ∈ Field ↔ 𝐹 ∈ Field)) |
| 5 | 2, 4 | anbi12d 632 | . . . 4 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ↔ (𝐸 ∈ Field ∧ 𝐹 ∈ Field))) |
| 6 | 3 | fveq2d 6835 | . . . . . . 7 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹)) |
| 7 | 1, 6 | oveq12d 7373 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒 ↾s (Base‘𝑓)) = (𝐸 ↾s (Base‘𝐹))) |
| 8 | 3, 7 | eqeq12d 2749 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑓 = (𝑒 ↾s (Base‘𝑓)) ↔ 𝐹 = (𝐸 ↾s (Base‘𝐹)))) |
| 9 | 1 | fveq2d 6835 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (SubRing‘𝑒) = (SubRing‘𝐸)) |
| 10 | 6, 9 | eleq12d 2827 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((Base‘𝑓) ∈ (SubRing‘𝑒) ↔ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
| 11 | 8, 10 | anbi12d 632 | . . . 4 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)) ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
| 12 | 5, 11 | anbi12d 632 | . . 3 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒))) ↔ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) ∧ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))) |
| 13 | df-fldext 33665 | . . 3 ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} | |
| 14 | 12, 13 | brabga 5479 | . 2 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) ∧ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))) |
| 15 | 14 | bianabs 541 | 1 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 ↾s cress 17151 SubRingcsubrg 20494 Fieldcfield 20655 /FldExtcfldext 33662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-iota 6445 df-fv 6497 df-ov 7358 df-fldext 33665 |
| This theorem is referenced by: ccfldextrr 33670 fldextsubrg 33673 sdrgfldext 33674 fldextress 33675 fldexttr 33682 fldextid 33683 fldsdrgfldext 33685 extdgmul 33687 fldgenfldext 33692 fldextrspunlem1 33699 algextdeglem4 33744 |
| Copyright terms: Public domain | W3C validator |