Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfldext Structured version   Visualization version   GIF version

Theorem brfldext 31722
Description: The field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
brfldext ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))

Proof of Theorem brfldext
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑒 = 𝐸)
21eleq1d 2823 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 ∈ Field ↔ 𝐸 ∈ Field))
3 simpr 485 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑓 = 𝐹)
43eleq1d 2823 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑓 ∈ Field ↔ 𝐹 ∈ Field))
52, 4anbi12d 631 . . . 4 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ↔ (𝐸 ∈ Field ∧ 𝐹 ∈ Field)))
63fveq2d 6778 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹))
71, 6oveq12d 7293 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒s (Base‘𝑓)) = (𝐸s (Base‘𝐹)))
83, 7eqeq12d 2754 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑓 = (𝑒s (Base‘𝑓)) ↔ 𝐹 = (𝐸s (Base‘𝐹))))
91fveq2d 6778 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (SubRing‘𝑒) = (SubRing‘𝐸))
106, 9eleq12d 2833 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → ((Base‘𝑓) ∈ (SubRing‘𝑒) ↔ (Base‘𝐹) ∈ (SubRing‘𝐸)))
118, 10anbi12d 631 . . . 4 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)) ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
125, 11anbi12d 631 . . 3 ((𝑒 = 𝐸𝑓 = 𝐹) → (((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒))) ↔ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) ∧ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))))
13 df-fldext 31717 . . 3 /FldExt = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}
1412, 13brabga 5447 . 2 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) ∧ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))))
1514bianabs 542 1 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  Fieldcfield 19992  SubRingcsubrg 20020  /FldExtcfldext 31713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-iota 6391  df-fv 6441  df-ov 7278  df-fldext 31717
This theorem is referenced by:  ccfldextrr  31723  fldextsubrg  31726  fldextress  31727  fldexttr  31733  fldextid  31734  extdgmul  31736
  Copyright terms: Public domain W3C validator