Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . . . 6
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑒 = 𝐸) |
2 | 1 | eleq1d 2823 |
. . . . 5
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒 ∈ Field ↔ 𝐸 ∈ Field)) |
3 | | simpr 485 |
. . . . . 6
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) |
4 | 3 | eleq1d 2823 |
. . . . 5
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑓 ∈ Field ↔ 𝐹 ∈ Field)) |
5 | 2, 4 | anbi12d 631 |
. . . 4
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ↔ (𝐸 ∈ Field ∧ 𝐹 ∈ Field))) |
6 | 3 | fveq2d 6778 |
. . . . . . 7
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹)) |
7 | 1, 6 | oveq12d 7293 |
. . . . . 6
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒 ↾s (Base‘𝑓)) = (𝐸 ↾s (Base‘𝐹))) |
8 | 3, 7 | eqeq12d 2754 |
. . . . 5
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑓 = (𝑒 ↾s (Base‘𝑓)) ↔ 𝐹 = (𝐸 ↾s (Base‘𝐹)))) |
9 | 1 | fveq2d 6778 |
. . . . . 6
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (SubRing‘𝑒) = (SubRing‘𝐸)) |
10 | 6, 9 | eleq12d 2833 |
. . . . 5
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((Base‘𝑓) ∈ (SubRing‘𝑒) ↔ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
11 | 8, 10 | anbi12d 631 |
. . . 4
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)) ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
12 | 5, 11 | anbi12d 631 |
. . 3
⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒))) ↔ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) ∧ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))) |
13 | | df-fldext 31717 |
. . 3
⊢
/FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} |
14 | 12, 13 | brabga 5447 |
. 2
⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) ∧ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))) |
15 | 14 | bianabs 542 |
1
⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |