| Step | Hyp | Ref
| Expression |
| 1 | | isfunc.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 2 | | isfunc.e |
. . . 4
⊢ (𝜑 → 𝐸 ∈ Cat) |
| 3 | | fvexd 6921 |
. . . . . . 7
⊢ ((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) → (Base‘𝑑) ∈ V) |
| 4 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) → 𝑑 = 𝐷) |
| 5 | 4 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) → (Base‘𝑑) = (Base‘𝐷)) |
| 6 | | isfunc.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐷) |
| 7 | 5, 6 | eqtr4di 2795 |
. . . . . . 7
⊢ ((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) → (Base‘𝑑) = 𝐵) |
| 8 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) |
| 9 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑒 = 𝐸) |
| 10 | 9 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) = (Base‘𝐸)) |
| 11 | | isfunc.c |
. . . . . . . . . . . 12
⊢ 𝐶 = (Base‘𝐸) |
| 12 | 10, 11 | eqtr4di 2795 |
. . . . . . . . . . 11
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) = 𝐶) |
| 13 | 8, 12 | feq23d 6731 |
. . . . . . . . . 10
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑓:𝑏⟶(Base‘𝑒) ↔ 𝑓:𝐵⟶𝐶)) |
| 14 | 11 | fvexi 6920 |
. . . . . . . . . . 11
⊢ 𝐶 ∈ V |
| 15 | 6 | fvexi 6920 |
. . . . . . . . . . 11
⊢ 𝐵 ∈ V |
| 16 | 14, 15 | elmap 8911 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (𝐶 ↑m 𝐵) ↔ 𝑓:𝐵⟶𝐶) |
| 17 | 13, 16 | bitr4di 289 |
. . . . . . . . 9
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑓:𝑏⟶(Base‘𝑒) ↔ 𝑓 ∈ (𝐶 ↑m 𝐵))) |
| 18 | 8 | sqxpeqd 5717 |
. . . . . . . . . . . 12
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵)) |
| 19 | 18 | ixpeq1d 8949 |
. . . . . . . . . . 11
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑒)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑑)‘𝑧)) = X𝑧 ∈
(𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑒)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑑)‘𝑧))) |
| 20 | 9 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Hom ‘𝑒) = (Hom ‘𝐸)) |
| 21 | | isfunc.j |
. . . . . . . . . . . . . . 15
⊢ 𝐽 = (Hom ‘𝐸) |
| 22 | 20, 21 | eqtr4di 2795 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Hom ‘𝑒) = 𝐽) |
| 23 | 22 | oveqd 7448 |
. . . . . . . . . . . . 13
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ((𝑓‘(1st ‘𝑧))(Hom ‘𝑒)(𝑓‘(2nd ‘𝑧))) = ((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧)))) |
| 24 | | simpll 767 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷) |
| 25 | 24 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Hom ‘𝑑) = (Hom ‘𝐷)) |
| 26 | | isfunc.h |
. . . . . . . . . . . . . . 15
⊢ 𝐻 = (Hom ‘𝐷) |
| 27 | 25, 26 | eqtr4di 2795 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Hom ‘𝑑) = 𝐻) |
| 28 | 27 | fveq1d 6908 |
. . . . . . . . . . . . 13
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ((Hom ‘𝑑)‘𝑧) = (𝐻‘𝑧)) |
| 29 | 23, 28 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (((𝑓‘(1st ‘𝑧))(Hom ‘𝑒)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑑)‘𝑧)) = (((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
| 30 | 29 | ixpeq2dv 8953 |
. . . . . . . . . . 11
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑒)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑑)‘𝑧)) = X𝑧 ∈
(𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
| 31 | 19, 30 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑒)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑑)‘𝑧)) = X𝑧 ∈
(𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
| 32 | 31 | eleq2d 2827 |
. . . . . . . . 9
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑒)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑑)‘𝑧)) ↔ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)))) |
| 33 | 24 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Id‘𝑑) = (Id‘𝐷)) |
| 34 | | isfunc.1 |
. . . . . . . . . . . . . . 15
⊢ 1 =
(Id‘𝐷) |
| 35 | 33, 34 | eqtr4di 2795 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Id‘𝑑) = 1 ) |
| 36 | 35 | fveq1d 6908 |
. . . . . . . . . . . . 13
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ((Id‘𝑑)‘𝑥) = ( 1 ‘𝑥)) |
| 37 | 36 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ((𝑥𝑔𝑥)‘((Id‘𝑑)‘𝑥)) = ((𝑥𝑔𝑥)‘( 1 ‘𝑥))) |
| 38 | 9 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Id‘𝑒) = (Id‘𝐸)) |
| 39 | | isfunc.i |
. . . . . . . . . . . . . 14
⊢ 𝐼 = (Id‘𝐸) |
| 40 | 38, 39 | eqtr4di 2795 |
. . . . . . . . . . . . 13
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Id‘𝑒) = 𝐼) |
| 41 | 40 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ((Id‘𝑒)‘(𝑓‘𝑥)) = (𝐼‘(𝑓‘𝑥))) |
| 42 | 37, 41 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (((𝑥𝑔𝑥)‘((Id‘𝑑)‘𝑥)) = ((Id‘𝑒)‘(𝑓‘𝑥)) ↔ ((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)))) |
| 43 | 27 | oveqd 7448 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑥(Hom ‘𝑑)𝑦) = (𝑥𝐻𝑦)) |
| 44 | 27 | oveqd 7448 |
. . . . . . . . . . . . . . 15
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑦(Hom ‘𝑑)𝑧) = (𝑦𝐻𝑧)) |
| 45 | 24 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (comp‘𝑑) = (comp‘𝐷)) |
| 46 | | isfunc.x |
. . . . . . . . . . . . . . . . . . . 20
⊢ · =
(comp‘𝐷) |
| 47 | 45, 46 | eqtr4di 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (comp‘𝑑) = · ) |
| 48 | 47 | oveqd 7448 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (〈𝑥, 𝑦〉(comp‘𝑑)𝑧) = (〈𝑥, 𝑦〉 · 𝑧)) |
| 49 | 48 | oveqd 7448 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚) = (𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) |
| 50 | 49 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚)) = ((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚))) |
| 51 | 9 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (comp‘𝑒) = (comp‘𝐸)) |
| 52 | | isfunc.o |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑂 = (comp‘𝐸) |
| 53 | 51, 52 | eqtr4di 2795 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (comp‘𝑒) = 𝑂) |
| 54 | 53 | oveqd 7448 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧)) = (〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))) |
| 55 | 54 | oveqd 7448 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) |
| 56 | 50, 55 | eqeq12d 2753 |
. . . . . . . . . . . . . . 15
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 57 | 44, 56 | raleqbidv 3346 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (∀𝑛 ∈ (𝑦(Hom ‘𝑑)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 58 | 43, 57 | raleqbidv 3346 |
. . . . . . . . . . . . 13
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (∀𝑚 ∈ (𝑥(Hom ‘𝑑)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑑)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 59 | 8, 58 | raleqbidv 3346 |
. . . . . . . . . . . 12
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑑)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑑)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 60 | 8, 59 | raleqbidv 3346 |
. . . . . . . . . . 11
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑑)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑑)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 61 | 42, 60 | anbi12d 632 |
. . . . . . . . . 10
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ((((𝑥𝑔𝑥)‘((Id‘𝑑)‘𝑥)) = ((Id‘𝑒)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑑)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑑)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) ↔ (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))) |
| 62 | 8, 61 | raleqbidv 3346 |
. . . . . . . . 9
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑑)‘𝑥)) = ((Id‘𝑒)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑑)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑑)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) ↔ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))) |
| 63 | 17, 32, 62 | 3anbi123d 1438 |
. . . . . . . 8
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ((𝑓:𝑏⟶(Base‘𝑒) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑒)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑑)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑑)‘𝑥)) = ((Id‘𝑒)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑑)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑑)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) ↔ (𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 64 | | df-3an 1089 |
. . . . . . . 8
⊢ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) ↔ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))) |
| 65 | 63, 64 | bitrdi 287 |
. . . . . . 7
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ((𝑓:𝑏⟶(Base‘𝑒) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑒)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑑)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑑)‘𝑥)) = ((Id‘𝑒)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑑)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑑)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) ↔ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 66 | 3, 7, 65 | sbcied2 3833 |
. . . . . 6
⊢ ((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) → ([(Base‘𝑑) / 𝑏](𝑓:𝑏⟶(Base‘𝑒) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑒)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑑)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑑)‘𝑥)) = ((Id‘𝑒)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑑)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑑)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) ↔ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 67 | 66 | opabbidv 5209 |
. . . . 5
⊢ ((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) → {〈𝑓, 𝑔〉 ∣ [(Base‘𝑑) / 𝑏](𝑓:𝑏⟶(Base‘𝑒) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑒)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑑)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑑)‘𝑥)) = ((Id‘𝑒)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑑)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑑)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) |
| 68 | | df-func 17903 |
. . . . 5
⊢ Func =
(𝑑 ∈ Cat, 𝑒 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑑) / 𝑏](𝑓:𝑏⟶(Base‘𝑒) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑒)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑑)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑑)‘𝑥)) = ((Id‘𝑒)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑑)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑑)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑑)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑒)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) |
| 69 | | ovex 7464 |
. . . . . . 7
⊢ (𝐶 ↑m 𝐵) ∈ V |
| 70 | | vsnex 5434 |
. . . . . . . 8
⊢ {𝑓} ∈ V |
| 71 | | ovex 7464 |
. . . . . . . . . 10
⊢ (((𝑓‘(1st
‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∈ V |
| 72 | 71 | rgenw 3065 |
. . . . . . . . 9
⊢
∀𝑧 ∈
(𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∈ V |
| 73 | | ixpexg 8962 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
(𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∈ V → X𝑧 ∈
(𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∈ V) |
| 74 | 72, 73 | ax-mp 5 |
. . . . . . . 8
⊢ X𝑧 ∈
(𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∈ V |
| 75 | 70, 74 | xpex 7773 |
. . . . . . 7
⊢ ({𝑓} × X𝑧 ∈
(𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∈ V |
| 76 | 69, 75 | iunex 7993 |
. . . . . 6
⊢ ∪ 𝑓 ∈ (𝐶 ↑m 𝐵)({𝑓} × X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∈ V |
| 77 | | simpl 482 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) → (𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)))) |
| 78 | 77 | anim2i 617 |
. . . . . . . . 9
⊢ ((𝑑 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))) → (𝑑 = 〈𝑓, 𝑔〉 ∧ (𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))))) |
| 79 | 78 | 2eximi 1836 |
. . . . . . . 8
⊢
(∃𝑓∃𝑔(𝑑 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))) → ∃𝑓∃𝑔(𝑑 = 〈𝑓, 𝑔〉 ∧ (𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))))) |
| 80 | | elopab 5532 |
. . . . . . . 8
⊢ (𝑑 ∈ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))} ↔ ∃𝑓∃𝑔(𝑑 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 81 | | eliunxp 5848 |
. . . . . . . 8
⊢ (𝑑 ∈ ∪ 𝑓 ∈ (𝐶 ↑m 𝐵)({𝑓} × X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ↔ ∃𝑓∃𝑔(𝑑 = 〈𝑓, 𝑔〉 ∧ (𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))))) |
| 82 | 79, 80, 81 | 3imtr4i 292 |
. . . . . . 7
⊢ (𝑑 ∈ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))} → 𝑑 ∈ ∪
𝑓 ∈ (𝐶 ↑m 𝐵)({𝑓} × X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)))) |
| 83 | 82 | ssriv 3987 |
. . . . . 6
⊢
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))} ⊆ ∪ 𝑓 ∈ (𝐶 ↑m 𝐵)({𝑓} × X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
| 84 | 76, 83 | ssexi 5322 |
. . . . 5
⊢
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))} ∈ V |
| 85 | 67, 68, 84 | ovmpoa 7588 |
. . . 4
⊢ ((𝐷 ∈ Cat ∧ 𝐸 ∈ Cat) → (𝐷 Func 𝐸) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) |
| 86 | 1, 2, 85 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐷 Func 𝐸) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) |
| 87 | 86 | breqd 5154 |
. 2
⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}𝐺)) |
| 88 | | brabv 5573 |
. . . 4
⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 89 | | elex 3501 |
. . . . . 6
⊢ (𝐹 ∈ (𝐶 ↑m 𝐵) → 𝐹 ∈ V) |
| 90 | | elex 3501 |
. . . . . 6
⊢ (𝐺 ∈ X𝑧 ∈
(𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) → 𝐺 ∈ V) |
| 91 | 89, 90 | anim12i 613 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 ↑m 𝐵) ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 92 | 91 | 3adant3 1133 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 ↑m 𝐵) ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))) → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 93 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹) |
| 94 | 93 | eleq1d 2826 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓 ∈ (𝐶 ↑m 𝐵) ↔ 𝐹 ∈ (𝐶 ↑m 𝐵))) |
| 95 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
| 96 | 93 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘(1st ‘𝑧)) = (𝐹‘(1st ‘𝑧))) |
| 97 | 93 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘(2nd ‘𝑧)) = (𝐹‘(2nd ‘𝑧))) |
| 98 | 96, 97 | oveq12d 7449 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) = ((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧)))) |
| 99 | 98 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) = (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
| 100 | 99 | ixpeq2dv 8953 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) = X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
| 101 | 95, 100 | eleq12d 2835 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)))) |
| 102 | 95 | oveqd 7448 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥𝑔𝑥) = (𝑥𝐺𝑥)) |
| 103 | 102 | fveq1d 6908 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = ((𝑥𝐺𝑥)‘( 1 ‘𝑥))) |
| 104 | 93 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
| 105 | 104 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝐼‘(𝑓‘𝑥)) = (𝐼‘(𝐹‘𝑥))) |
| 106 | 103, 105 | eqeq12d 2753 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ↔ ((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)))) |
| 107 | 95 | oveqd 7448 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥𝑔𝑧) = (𝑥𝐺𝑧)) |
| 108 | 107 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = ((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚))) |
| 109 | 93 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘𝑦) = (𝐹‘𝑦)) |
| 110 | 104, 109 | opeq12d 4881 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 〈(𝑓‘𝑥), (𝑓‘𝑦)〉 = 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
| 111 | 93 | fveq1d 6908 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘𝑧) = (𝐹‘𝑧)) |
| 112 | 110, 111 | oveq12d 7449 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧)) = (〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))) |
| 113 | 95 | oveqd 7448 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑦𝑔𝑧) = (𝑦𝐺𝑧)) |
| 114 | 113 | fveq1d 6908 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑦𝑔𝑧)‘𝑛) = ((𝑦𝐺𝑧)‘𝑛)) |
| 115 | 95 | oveqd 7448 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥𝑔𝑦) = (𝑥𝐺𝑦)) |
| 116 | 115 | fveq1d 6908 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑥𝑔𝑦)‘𝑚) = ((𝑥𝐺𝑦)‘𝑚)) |
| 117 | 112, 114,
116 | oveq123d 7452 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))) |
| 118 | 108, 117 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))) |
| 119 | 118 | 2ralbidv 3221 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))) |
| 120 | 119 | 2ralbidv 3221 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))) |
| 121 | 106, 120 | anbi12d 632 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) ↔ (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
| 122 | 121 | ralbidv 3178 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) ↔ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
| 123 | 94, 101, 122 | 3anbi123d 1438 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) ↔ (𝐹 ∈ (𝐶 ↑m 𝐵) ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
| 124 | 64, 123 | bitr3id 285 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) ↔ (𝐹 ∈ (𝐶 ↑m 𝐵) ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
| 125 | | eqid 2737 |
. . . . 5
⊢
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))} |
| 126 | 124, 125 | brabga 5539 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}𝐺 ↔ (𝐹 ∈ (𝐶 ↑m 𝐵) ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
| 127 | 88, 92, 126 | pm5.21nii 378 |
. . 3
⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}𝐺 ↔ (𝐹 ∈ (𝐶 ↑m 𝐵) ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
| 128 | 14, 15 | elmap 8911 |
. . . 4
⊢ (𝐹 ∈ (𝐶 ↑m 𝐵) ↔ 𝐹:𝐵⟶𝐶) |
| 129 | 128 | 3anbi1i 1158 |
. . 3
⊢ ((𝐹 ∈ (𝐶 ↑m 𝐵) ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))) ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
| 130 | 127, 129 | bitri 275 |
. 2
⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐶 ↑m 𝐵) ∧ 𝑔 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝑓‘(1st ‘𝑧))𝐽(𝑓‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝑔𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉𝑂(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}𝐺 ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
| 131 | 87, 130 | bitrdi 287 |
1
⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉 · 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉𝑂(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |