![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
funcrcl | ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-func 17812 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓‘𝑥), (𝑓‘𝑦)⟩(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
2 | 1 | elmpocl 7650 | 1 ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∀wral 3059 [wsbc 3776 ⟨cop 4633 {copab 5209 × cxp 5673 ⟶wf 6538 ‘cfv 6542 (class class class)co 7411 1st c1st 7975 2nd c2nd 7976 ↑m cmap 8822 Xcixp 8893 Basecbs 17148 Hom chom 17212 compcco 17213 Catccat 17612 Idccid 17613 Func cfunc 17808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-xp 5681 df-dm 5685 df-iota 6494 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-func 17812 |
This theorem is referenced by: funcf1 17820 funcixp 17821 funcid 17824 funcco 17825 funcsect 17826 funcinv 17827 funciso 17828 funcoppc 17829 cofucl 17842 cofulid 17844 cofurid 17845 funcres 17850 funcres2b 17851 funcpropd 17855 funcres2c 17856 isfull 17865 isfth 17869 fthsect 17880 fthinv 17881 fthmon 17882 fthepi 17883 ffthiso 17884 natfval 17901 fucbas 17916 fuchom 17917 fuchomOLD 17918 fucco 17919 fuccocl 17921 fucidcl 17922 fuclid 17923 fucrid 17924 fucass 17925 fucid 17928 fucsect 17929 fucinv 17930 invfuc 17931 fuciso 17932 funcsetcres2 18047 prfcl 18159 prf1st 18160 prf2nd 18161 curf1cl 18185 curfcl 18189 uncfval 18191 uncfcl 18192 uncf1 18193 uncf2 18194 curfuncf 18195 uncfcurf 18196 yonffthlem 18239 yoneda 18240 |
Copyright terms: Public domain | W3C validator |