MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcrcl Structured version   Visualization version   GIF version

Theorem funcrcl 17876
Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
funcrcl (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))

Proof of Theorem funcrcl
Dummy variables 𝑓 𝑏 𝑔 𝑚 𝑛 𝑡 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-func 17871 . 2 Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st𝑧))(Hom ‘𝑢)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓𝑥)) ∧ ∀𝑦𝑏𝑧𝑏𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝑢)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚))))})
21elmpocl 7648 1 (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  [wsbc 3765  cop 4607  {copab 5181   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  m cmap 8840  Xcixp 8911  Basecbs 17228  Hom chom 17282  compcco 17283  Catccat 17676  Idccid 17677   Func cfunc 17867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-dm 5664  df-iota 6484  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-func 17871
This theorem is referenced by:  funcf1  17879  funcixp  17880  funcid  17883  funcco  17884  funcsect  17885  funcinv  17886  funciso  17887  funcoppc  17888  cofucl  17901  cofulid  17903  cofurid  17904  funcres  17909  funcres2b  17910  funcpropd  17915  funcres2c  17916  isfull  17925  isfth  17929  fthsect  17940  fthinv  17941  fthmon  17942  fthepi  17943  ffthiso  17944  natfval  17962  fucbas  17976  fuchom  17977  fucco  17978  fuccocl  17980  fucidcl  17981  fuclid  17982  fucrid  17983  fucass  17984  fucid  17987  fucsect  17988  fucinv  17989  invfuc  17990  fuciso  17991  funcsetcres2  18106  prfcl  18215  prf1st  18216  prf2nd  18217  curf1cl  18240  curfcl  18244  uncfval  18246  uncfcl  18247  uncf1  18248  uncf2  18249  curfuncf  18250  uncfcurf  18251  yonffthlem  18294  yoneda  18295  funcrcl2  49044  funcrcl3  49045  termc2  49403  euendfunc  49411
  Copyright terms: Public domain W3C validator