| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcrcl | ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-func 17796 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
| 2 | 1 | elmpocl 7610 | 1 ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 [wsbc 3750 〈cop 4591 {copab 5164 × cxp 5629 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 ↑m cmap 8776 Xcixp 8847 Basecbs 17155 Hom chom 17207 compcco 17208 Catccat 17601 Idccid 17602 Func cfunc 17792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-dm 5641 df-iota 6452 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-func 17796 |
| This theorem is referenced by: funcf1 17804 funcixp 17805 funcid 17808 funcco 17809 funcsect 17810 funcinv 17811 funciso 17812 funcoppc 17813 cofucl 17826 cofulid 17828 cofurid 17829 funcres 17834 funcres2b 17835 funcpropd 17840 funcres2c 17841 isfull 17850 isfth 17854 fthsect 17865 fthinv 17866 fthmon 17867 fthepi 17868 ffthiso 17869 natfval 17887 fucbas 17901 fuchom 17902 fucco 17903 fuccocl 17905 fucidcl 17906 fuclid 17907 fucrid 17908 fucass 17909 fucid 17912 fucsect 17913 fucinv 17914 invfuc 17915 fuciso 17916 funcsetcres2 18031 prfcl 18140 prf1st 18141 prf2nd 18142 curf1cl 18165 curfcl 18169 uncfval 18171 uncfcl 18172 uncf1 18173 uncf2 18174 curfuncf 18175 uncfcurf 18176 yonffthlem 18219 yoneda 18220 funcrcl2 49041 funcrcl3 49042 initc 49053 prcofpropd 49341 termc2 49480 euendfunc 49488 lanpropd 49577 ranpropd 49578 ranval3 49593 lmddu 49629 cmddu 49630 |
| Copyright terms: Public domain | W3C validator |