MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcrcl Structured version   Visualization version   GIF version

Theorem funcrcl 17770
Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
funcrcl (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))

Proof of Theorem funcrcl
Dummy variables 𝑓 𝑏 𝑔 𝑚 𝑛 𝑡 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-func 17765 . 2 Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st𝑧))(Hom ‘𝑢)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓𝑥)) ∧ ∀𝑦𝑏𝑧𝑏𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝑢)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚))))})
21elmpocl 7587 1 (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  [wsbc 3736  cop 4579  {copab 5151   × cxp 5612  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  m cmap 8750  Xcixp 8821  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571   Func cfunc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-dm 5624  df-iota 6437  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-func 17765
This theorem is referenced by:  funcf1  17773  funcixp  17774  funcid  17777  funcco  17778  funcsect  17779  funcinv  17780  funciso  17781  funcoppc  17782  cofucl  17795  cofulid  17797  cofurid  17798  funcres  17803  funcres2b  17804  funcpropd  17809  funcres2c  17810  isfull  17819  isfth  17823  fthsect  17834  fthinv  17835  fthmon  17836  fthepi  17837  ffthiso  17838  natfval  17856  fucbas  17870  fuchom  17871  fucco  17872  fuccocl  17874  fucidcl  17875  fuclid  17876  fucrid  17877  fucass  17878  fucid  17881  fucsect  17882  fucinv  17883  invfuc  17884  fuciso  17885  funcsetcres2  18000  prfcl  18109  prf1st  18110  prf2nd  18111  curf1cl  18134  curfcl  18138  uncfval  18140  uncfcl  18141  uncf1  18142  uncf2  18143  curfuncf  18144  uncfcurf  18145  yonffthlem  18188  yoneda  18189  funcrcl2  49119  funcrcl3  49120  initc  49131  prcofpropd  49419  termc2  49558  euendfunc  49566  lanpropd  49655  ranpropd  49656  ranval3  49671  lmddu  49707  cmddu  49708
  Copyright terms: Public domain W3C validator