| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcrcl | ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-func 17765 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
| 2 | 1 | elmpocl 7587 | 1 ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 [wsbc 3736 〈cop 4579 {copab 5151 × cxp 5612 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 ↑m cmap 8750 Xcixp 8821 Basecbs 17120 Hom chom 17172 compcco 17173 Catccat 17570 Idccid 17571 Func cfunc 17761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-dm 5624 df-iota 6437 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-func 17765 |
| This theorem is referenced by: funcf1 17773 funcixp 17774 funcid 17777 funcco 17778 funcsect 17779 funcinv 17780 funciso 17781 funcoppc 17782 cofucl 17795 cofulid 17797 cofurid 17798 funcres 17803 funcres2b 17804 funcpropd 17809 funcres2c 17810 isfull 17819 isfth 17823 fthsect 17834 fthinv 17835 fthmon 17836 fthepi 17837 ffthiso 17838 natfval 17856 fucbas 17870 fuchom 17871 fucco 17872 fuccocl 17874 fucidcl 17875 fuclid 17876 fucrid 17877 fucass 17878 fucid 17881 fucsect 17882 fucinv 17883 invfuc 17884 fuciso 17885 funcsetcres2 18000 prfcl 18109 prf1st 18110 prf2nd 18111 curf1cl 18134 curfcl 18138 uncfval 18140 uncfcl 18141 uncf1 18142 uncf2 18143 curfuncf 18144 uncfcurf 18145 yonffthlem 18188 yoneda 18189 funcrcl2 49119 funcrcl3 49120 initc 49131 prcofpropd 49419 termc2 49558 euendfunc 49566 lanpropd 49655 ranpropd 49656 ranval3 49671 lmddu 49707 cmddu 49708 |
| Copyright terms: Public domain | W3C validator |