| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcrcl | ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-func 17765 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
| 2 | 1 | elmpocl 7590 | 1 ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 [wsbc 3742 〈cop 4583 {copab 5154 × cxp 5617 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 2nd c2nd 7923 ↑m cmap 8753 Xcixp 8824 Basecbs 17120 Hom chom 17172 compcco 17173 Catccat 17570 Idccid 17571 Func cfunc 17761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-dm 5629 df-iota 6438 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-func 17765 |
| This theorem is referenced by: funcf1 17773 funcixp 17774 funcid 17777 funcco 17778 funcsect 17779 funcinv 17780 funciso 17781 funcoppc 17782 cofucl 17795 cofulid 17797 cofurid 17798 funcres 17803 funcres2b 17804 funcpropd 17809 funcres2c 17810 isfull 17819 isfth 17823 fthsect 17834 fthinv 17835 fthmon 17836 fthepi 17837 ffthiso 17838 natfval 17856 fucbas 17870 fuchom 17871 fucco 17872 fuccocl 17874 fucidcl 17875 fuclid 17876 fucrid 17877 fucass 17878 fucid 17881 fucsect 17882 fucinv 17883 invfuc 17884 fuciso 17885 funcsetcres2 18000 prfcl 18109 prf1st 18110 prf2nd 18111 curf1cl 18134 curfcl 18138 uncfval 18140 uncfcl 18141 uncf1 18142 uncf2 18143 curfuncf 18144 uncfcurf 18145 yonffthlem 18188 yoneda 18189 funcrcl2 49064 funcrcl3 49065 initc 49076 prcofpropd 49364 termc2 49503 euendfunc 49511 lanpropd 49600 ranpropd 49601 ranval3 49616 lmddu 49652 cmddu 49653 |
| Copyright terms: Public domain | W3C validator |