Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
funcrcl | ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-func 17364 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
2 | 1 | elmpocl 7447 | 1 ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 [wsbc 3694 〈cop 4547 {copab 5115 × cxp 5549 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 1st c1st 7759 2nd c2nd 7760 ↑m cmap 8508 Xcixp 8578 Basecbs 16760 Hom chom 16813 compcco 16814 Catccat 17167 Idccid 17168 Func cfunc 17360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-dm 5561 df-iota 6338 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-func 17364 |
This theorem is referenced by: funcf1 17372 funcixp 17373 funcid 17376 funcco 17377 funcsect 17378 funcinv 17379 funciso 17380 funcoppc 17381 cofucl 17394 cofulid 17396 cofurid 17397 funcres 17402 funcres2b 17403 funcpropd 17407 funcres2c 17408 isfull 17417 isfth 17421 fthsect 17432 fthinv 17433 fthmon 17434 fthepi 17435 ffthiso 17436 natfval 17453 fucbas 17468 fuchom 17469 fuchomOLD 17470 fucco 17471 fuccocl 17473 fucidcl 17474 fuclid 17475 fucrid 17476 fucass 17477 fucid 17480 fucsect 17481 fucinv 17482 invfuc 17483 fuciso 17484 funcsetcres2 17599 prfcl 17710 prf1st 17711 prf2nd 17712 curf1cl 17736 curfcl 17740 uncfval 17742 uncfcl 17743 uncf1 17744 uncf2 17745 curfuncf 17746 uncfcurf 17747 yonffthlem 17790 yoneda 17791 |
Copyright terms: Public domain | W3C validator |