MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcrcl Structured version   Visualization version   GIF version

Theorem funcrcl 17908
Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
funcrcl (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))

Proof of Theorem funcrcl
Dummy variables 𝑓 𝑏 𝑔 𝑚 𝑛 𝑡 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-func 17903 . 2 Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st𝑧))(Hom ‘𝑢)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓𝑥)) ∧ ∀𝑦𝑏𝑧𝑏𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝑢)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚))))})
21elmpocl 7674 1 (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  [wsbc 3788  cop 4632  {copab 5205   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  m cmap 8866  Xcixp 8937  Basecbs 17247  Hom chom 17308  compcco 17309  Catccat 17707  Idccid 17708   Func cfunc 17899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-dm 5695  df-iota 6514  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-func 17903
This theorem is referenced by:  funcf1  17911  funcixp  17912  funcid  17915  funcco  17916  funcsect  17917  funcinv  17918  funciso  17919  funcoppc  17920  cofucl  17933  cofulid  17935  cofurid  17936  funcres  17941  funcres2b  17942  funcpropd  17947  funcres2c  17948  isfull  17957  isfth  17961  fthsect  17972  fthinv  17973  fthmon  17974  fthepi  17975  ffthiso  17976  natfval  17994  fucbas  18008  fuchom  18009  fucco  18010  fuccocl  18012  fucidcl  18013  fuclid  18014  fucrid  18015  fucass  18016  fucid  18019  fucsect  18020  fucinv  18021  invfuc  18022  fuciso  18023  funcsetcres2  18138  prfcl  18248  prf1st  18249  prf2nd  18250  curf1cl  18273  curfcl  18277  uncfval  18279  uncfcl  18280  uncf1  18281  uncf2  18282  curfuncf  18283  uncfcurf  18284  yonffthlem  18327  yoneda  18328  funcrcl2  48912  funcrcl3  48913
  Copyright terms: Public domain W3C validator