Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
funcrcl | ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-func 17675 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
2 | 1 | elmpocl 7582 | 1 ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 [wsbc 3734 〈cop 4587 {copab 5162 × cxp 5625 ⟶wf 6484 ‘cfv 6488 (class class class)co 7346 1st c1st 7906 2nd c2nd 7907 ↑m cmap 8695 Xcixp 8765 Basecbs 17014 Hom chom 17075 compcco 17076 Catccat 17475 Idccid 17476 Func cfunc 17671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pr 5379 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-xp 5633 df-dm 5637 df-iota 6440 df-fv 6496 df-ov 7349 df-oprab 7350 df-mpo 7351 df-func 17675 |
This theorem is referenced by: funcf1 17683 funcixp 17684 funcid 17687 funcco 17688 funcsect 17689 funcinv 17690 funciso 17691 funcoppc 17692 cofucl 17705 cofulid 17707 cofurid 17708 funcres 17713 funcres2b 17714 funcpropd 17718 funcres2c 17719 isfull 17728 isfth 17732 fthsect 17743 fthinv 17744 fthmon 17745 fthepi 17746 ffthiso 17747 natfval 17764 fucbas 17779 fuchom 17780 fuchomOLD 17781 fucco 17782 fuccocl 17784 fucidcl 17785 fuclid 17786 fucrid 17787 fucass 17788 fucid 17791 fucsect 17792 fucinv 17793 invfuc 17794 fuciso 17795 funcsetcres2 17910 prfcl 18022 prf1st 18023 prf2nd 18024 curf1cl 18048 curfcl 18052 uncfval 18054 uncfcl 18055 uncf1 18056 uncf2 18057 curfuncf 18058 uncfcurf 18059 yonffthlem 18102 yoneda 18103 |
Copyright terms: Public domain | W3C validator |