![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
funcrcl | ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-func 17908 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
2 | 1 | elmpocl 7673 | 1 ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 [wsbc 3790 〈cop 4636 {copab 5209 × cxp 5686 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 1st c1st 8010 2nd c2nd 8011 ↑m cmap 8864 Xcixp 8935 Basecbs 17244 Hom chom 17308 compcco 17309 Catccat 17708 Idccid 17709 Func cfunc 17904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-dm 5698 df-iota 6515 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-func 17908 |
This theorem is referenced by: funcf1 17916 funcixp 17917 funcid 17920 funcco 17921 funcsect 17922 funcinv 17923 funciso 17924 funcoppc 17925 cofucl 17938 cofulid 17940 cofurid 17941 funcres 17946 funcres2b 17947 funcpropd 17953 funcres2c 17954 isfull 17963 isfth 17967 fthsect 17978 fthinv 17979 fthmon 17980 fthepi 17981 ffthiso 17982 natfval 18000 fucbas 18015 fuchom 18016 fuchomOLD 18017 fucco 18018 fuccocl 18020 fucidcl 18021 fuclid 18022 fucrid 18023 fucass 18024 fucid 18027 fucsect 18028 fucinv 18029 invfuc 18030 fuciso 18031 funcsetcres2 18146 prfcl 18258 prf1st 18259 prf2nd 18260 curf1cl 18284 curfcl 18288 uncfval 18290 uncfcl 18291 uncf1 18292 uncf2 18293 curfuncf 18294 uncfcurf 18295 yonffthlem 18338 yoneda 18339 funcrcl2 48808 funcrcl3 48809 |
Copyright terms: Public domain | W3C validator |