![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
funcrcl | ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-func 16986 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑𝑚 ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
2 | 1 | elmpocl 7206 | 1 ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ∀wral 3089 [wsbc 3682 〈cop 4447 {copab 4991 × cxp 5405 ⟶wf 6184 ‘cfv 6188 (class class class)co 6976 1st c1st 7499 2nd c2nd 7500 ↑𝑚 cmap 8206 Xcixp 8259 Basecbs 16339 Hom chom 16432 compcco 16433 Catccat 16793 Idccid 16794 Func cfunc 16982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-xp 5413 df-dm 5417 df-iota 6152 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-func 16986 |
This theorem is referenced by: funcf1 16994 funcixp 16995 funcid 16998 funcco 16999 funcsect 17000 funcinv 17001 funciso 17002 funcoppc 17003 cofucl 17016 cofulid 17018 cofurid 17019 funcres 17024 funcres2b 17025 funcpropd 17028 funcres2c 17029 isfull 17038 isfth 17042 fthsect 17053 fthinv 17054 fthmon 17055 fthepi 17056 ffthiso 17057 natfval 17074 fucbas 17088 fuchom 17089 fucco 17090 fuccocl 17092 fucidcl 17093 fuclid 17094 fucrid 17095 fucass 17096 fucid 17099 fucsect 17100 fucinv 17101 invfuc 17102 fuciso 17103 funcsetcres2 17211 prfcl 17311 prf1st 17312 prf2nd 17313 curf1cl 17336 curfcl 17340 uncfval 17342 uncfcl 17343 uncf1 17344 uncf2 17345 curfuncf 17346 uncfcurf 17347 yonffthlem 17390 yoneda 17391 |
Copyright terms: Public domain | W3C validator |