![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
funcrcl | ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-func 17922 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
2 | 1 | elmpocl 7691 | 1 ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 [wsbc 3804 〈cop 4654 {copab 5228 × cxp 5698 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 ↑m cmap 8884 Xcixp 8955 Basecbs 17258 Hom chom 17322 compcco 17323 Catccat 17722 Idccid 17723 Func cfunc 17918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-func 17922 |
This theorem is referenced by: funcf1 17930 funcixp 17931 funcid 17934 funcco 17935 funcsect 17936 funcinv 17937 funciso 17938 funcoppc 17939 cofucl 17952 cofulid 17954 cofurid 17955 funcres 17960 funcres2b 17961 funcpropd 17967 funcres2c 17968 isfull 17977 isfth 17981 fthsect 17992 fthinv 17993 fthmon 17994 fthepi 17995 ffthiso 17996 natfval 18014 fucbas 18029 fuchom 18030 fuchomOLD 18031 fucco 18032 fuccocl 18034 fucidcl 18035 fuclid 18036 fucrid 18037 fucass 18038 fucid 18041 fucsect 18042 fucinv 18043 invfuc 18044 fuciso 18045 funcsetcres2 18160 prfcl 18272 prf1st 18273 prf2nd 18274 curf1cl 18298 curfcl 18302 uncfval 18304 uncfcl 18305 uncf1 18306 uncf2 18307 curfuncf 18308 uncfcurf 18309 yonffthlem 18352 yoneda 18353 |
Copyright terms: Public domain | W3C validator |