| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcrcl | ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-func 17871 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
| 2 | 1 | elmpocl 7648 | 1 ⊢ (𝐹 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 [wsbc 3765 〈cop 4607 {copab 5181 × cxp 5652 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 ↑m cmap 8840 Xcixp 8911 Basecbs 17228 Hom chom 17282 compcco 17283 Catccat 17676 Idccid 17677 Func cfunc 17867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-dm 5664 df-iota 6484 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-func 17871 |
| This theorem is referenced by: funcf1 17879 funcixp 17880 funcid 17883 funcco 17884 funcsect 17885 funcinv 17886 funciso 17887 funcoppc 17888 cofucl 17901 cofulid 17903 cofurid 17904 funcres 17909 funcres2b 17910 funcpropd 17915 funcres2c 17916 isfull 17925 isfth 17929 fthsect 17940 fthinv 17941 fthmon 17942 fthepi 17943 ffthiso 17944 natfval 17962 fucbas 17976 fuchom 17977 fucco 17978 fuccocl 17980 fucidcl 17981 fuclid 17982 fucrid 17983 fucass 17984 fucid 17987 fucsect 17988 fucinv 17989 invfuc 17990 fuciso 17991 funcsetcres2 18106 prfcl 18215 prf1st 18216 prf2nd 18217 curf1cl 18240 curfcl 18244 uncfval 18246 uncfcl 18247 uncf1 18248 uncf2 18249 curfuncf 18250 uncfcurf 18251 yonffthlem 18294 yoneda 18295 funcrcl2 49044 funcrcl3 49045 termc2 49403 euendfunc 49411 |
| Copyright terms: Public domain | W3C validator |