Detailed syntax breakdown of Definition df-hcau
| Step | Hyp | Ref
| Expression |
| 1 | | ccauold 30912 |
. 2
class
Cauchy |
| 2 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 3 | 2 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 4 | | vf |
. . . . . . . . . . 11
setvar 𝑓 |
| 5 | 4 | cv 1539 |
. . . . . . . . . 10
class 𝑓 |
| 6 | 3, 5 | cfv 6536 |
. . . . . . . . 9
class (𝑓‘𝑦) |
| 7 | | vz |
. . . . . . . . . . 11
setvar 𝑧 |
| 8 | 7 | cv 1539 |
. . . . . . . . . 10
class 𝑧 |
| 9 | 8, 5 | cfv 6536 |
. . . . . . . . 9
class (𝑓‘𝑧) |
| 10 | | cmv 30911 |
. . . . . . . . 9
class
−ℎ |
| 11 | 6, 9, 10 | co 7410 |
. . . . . . . 8
class ((𝑓‘𝑦) −ℎ (𝑓‘𝑧)) |
| 12 | | cno 30909 |
. . . . . . . 8
class
normℎ |
| 13 | 11, 12 | cfv 6536 |
. . . . . . 7
class
(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) |
| 14 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 15 | 14 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 16 | | clt 11274 |
. . . . . . 7
class
< |
| 17 | 13, 15, 16 | wbr 5124 |
. . . . . 6
wff
(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 |
| 18 | | cuz 12857 |
. . . . . . 7
class
ℤ≥ |
| 19 | 3, 18 | cfv 6536 |
. . . . . 6
class
(ℤ≥‘𝑦) |
| 20 | 17, 7, 19 | wral 3052 |
. . . . 5
wff
∀𝑧 ∈
(ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 |
| 21 | | cn 12245 |
. . . . 5
class
ℕ |
| 22 | 20, 2, 21 | wrex 3061 |
. . . 4
wff
∃𝑦 ∈
ℕ ∀𝑧 ∈
(ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 |
| 23 | | crp 13013 |
. . . 4
class
ℝ+ |
| 24 | 22, 14, 23 | wral 3052 |
. . 3
wff
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 |
| 25 | | chba 30905 |
. . . 4
class
ℋ |
| 26 | | cmap 8845 |
. . . 4
class
↑m |
| 27 | 25, 21, 26 | co 7410 |
. . 3
class ( ℋ
↑m ℕ) |
| 28 | 24, 4, 27 | crab 3420 |
. 2
class {𝑓 ∈ ( ℋ
↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈
(ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} |
| 29 | 1, 28 | wceq 1540 |
1
wff Cauchy =
{𝑓 ∈ ( ℋ
↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈
(ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} |