Detailed syntax breakdown of Definition df-hcau
Step | Hyp | Ref
| Expression |
1 | | ccauold 29288 |
. 2
class
Cauchy |
2 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
3 | 2 | cv 1538 |
. . . . . . . . . 10
class 𝑦 |
4 | | vf |
. . . . . . . . . . 11
setvar 𝑓 |
5 | 4 | cv 1538 |
. . . . . . . . . 10
class 𝑓 |
6 | 3, 5 | cfv 6433 |
. . . . . . . . 9
class (𝑓‘𝑦) |
7 | | vz |
. . . . . . . . . . 11
setvar 𝑧 |
8 | 7 | cv 1538 |
. . . . . . . . . 10
class 𝑧 |
9 | 8, 5 | cfv 6433 |
. . . . . . . . 9
class (𝑓‘𝑧) |
10 | | cmv 29287 |
. . . . . . . . 9
class
−ℎ |
11 | 6, 9, 10 | co 7275 |
. . . . . . . 8
class ((𝑓‘𝑦) −ℎ (𝑓‘𝑧)) |
12 | | cno 29285 |
. . . . . . . 8
class
normℎ |
13 | 11, 12 | cfv 6433 |
. . . . . . 7
class
(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) |
14 | | vx |
. . . . . . . 8
setvar 𝑥 |
15 | 14 | cv 1538 |
. . . . . . 7
class 𝑥 |
16 | | clt 11009 |
. . . . . . 7
class
< |
17 | 13, 15, 16 | wbr 5074 |
. . . . . 6
wff
(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 |
18 | | cuz 12582 |
. . . . . . 7
class
ℤ≥ |
19 | 3, 18 | cfv 6433 |
. . . . . 6
class
(ℤ≥‘𝑦) |
20 | 17, 7, 19 | wral 3064 |
. . . . 5
wff
∀𝑧 ∈
(ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 |
21 | | cn 11973 |
. . . . 5
class
ℕ |
22 | 20, 2, 21 | wrex 3065 |
. . . 4
wff
∃𝑦 ∈
ℕ ∀𝑧 ∈
(ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 |
23 | | crp 12730 |
. . . 4
class
ℝ+ |
24 | 22, 14, 23 | wral 3064 |
. . 3
wff
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 |
25 | | chba 29281 |
. . . 4
class
ℋ |
26 | | cmap 8615 |
. . . 4
class
↑m |
27 | 25, 21, 26 | co 7275 |
. . 3
class ( ℋ
↑m ℕ) |
28 | 24, 4, 27 | crab 3068 |
. 2
class {𝑓 ∈ ( ℋ
↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈
(ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} |
29 | 1, 28 | wceq 1539 |
1
wff Cauchy =
{𝑓 ∈ ( ℋ
↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈
(ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} |