Home | Metamath
Proof Explorer Theorem List (p. 307 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-at 30601 | Define the set of atoms in a Hilbert lattice. An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. Definition of atom in [Kalmbach] p. 15. See ela 30602 and elat2 30603 for membership relations. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | ||
Theorem | ela 30602 | Atoms in a Hilbert lattice are the elements that cover the zero subspace. Definition of atom in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) | ||
Theorem | elat2 30603* | Expanded membership relation for the set of atoms, i.e. the predicate "is an atom (of the Hilbert lattice)." An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))))) | ||
Theorem | elatcv0 30604 | A Hilbert lattice element is an atom iff it covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → (𝐴 ∈ HAtoms ↔ 0ℋ ⋖ℋ 𝐴)) | ||
Theorem | atcv0 30605 | An atom covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms → 0ℋ ⋖ℋ 𝐴) | ||
Theorem | atssch 30606 | Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
⊢ HAtoms ⊆ Cℋ | ||
Theorem | atelch 30607 | An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) | ||
Theorem | atne0 30608 | An atom is not the Hilbert lattice zero. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms → 𝐴 ≠ 0ℋ) | ||
Theorem | atss 30609 | A lattice element smaller than an atom is either the atom or zero. (Contributed by NM, 25-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) | ||
Theorem | atsseq 30610 | Two atoms in a subset relationship are equal. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | atcveq0 30611 | A Hilbert lattice element covered by an atom must be the zero subspace. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⋖ℋ 𝐵 ↔ 𝐴 = 0ℋ)) | ||
Theorem | h1da 30612 | A 1-dimensional subspace is an atom. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (⊥‘(⊥‘{𝐴})) ∈ HAtoms) | ||
Theorem | spansna 30613 | The span of the singleton of a vector is an atom. (Contributed by NM, 18-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (span‘{𝐴}) ∈ HAtoms) | ||
Theorem | sh1dle 30614 | A 1-dimensional subspace is less than or equal to any subspace containing its generating vector. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴) → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴) | ||
Theorem | ch1dle 30615 | A 1-dimensional subspace is less than or equal to any member of Cℋ containing its generating vector. (Contributed by NM, 30-May-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ 𝐴) → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴) | ||
Theorem | atom1d 30616* | The 1-dimensional subspaces of Hilbert space are its atoms. Part of Remark 10.3.5 of [BeltramettiCassinelli] p. 107. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0ℎ ∧ 𝐴 = (span‘{𝑥}))) | ||
Theorem | superpos 30617* | Superposition Principle. If 𝐴 and 𝐵 are distinct atoms, there exists a third atom, distinct from 𝐴 and 𝐵, that is the superposition of 𝐴 and 𝐵. Definition 3.4-3(a) in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴 ≠ 𝐵) → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | chcv1 30618 | The Hilbert lattice has the covering property. Proposition 1(ii) of [Kalmbach] p. 140 (and its converse). (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | chcv2 30619 | The Hilbert lattice has the covering property. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊊ (𝐴 ∨ℋ 𝐵) ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | chjatom 30620 | The join of a closed subspace and an atom equals their subspace sum. Special case of remark in [Kalmbach] p. 65, stating that if 𝐴 or 𝐵 is finite-dimensional, then this equality holds. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | shatomici 30621* | The lattice of Hilbert subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝐴 ≠ 0ℋ → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) | ||
Theorem | hatomici 30622* | The Hilbert lattice is atomic, i.e. any nonzero element is greater than or equal to some atom. Remark in [Kalmbach] p. 140. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐴 ≠ 0ℋ → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) | ||
Theorem | hatomic 30623* | A Hilbert lattice is atomic, i.e. any nonzero element is greater than or equal to some atom. Remark in [Kalmbach] p. 140. Also Definition 3.4-2 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐴 ≠ 0ℋ) → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) | ||
Theorem | shatomistici 30624* | The lattice of Hilbert subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ ⇒ ⊢ 𝐴 = (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | ||
Theorem | hatomistici 30625* | Cℋ is atomistic, i.e. any element is the supremum of its atoms. Remark in [Kalmbach] p. 140. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 = ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | ||
Theorem | chpssati 30626* | Two Hilbert lattice elements in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴)) | ||
Theorem | chrelati 30627* | The Hilbert lattice is relatively atomic. Remark 2 of [Kalmbach] p. 149. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 ∈ HAtoms (𝐴 ⊊ (𝐴 ∨ℋ 𝑥) ∧ (𝐴 ∨ℋ 𝑥) ⊆ 𝐵)) | ||
Theorem | chrelat2i 30628* | A consequence of relative atomicity. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵)) | ||
Theorem | cvati 30629* | If a Hilbert lattice element covers another, it equals the other joined with some atom. This is a consequence of the relative atomicity of Hilbert space. (Contributed by NM, 30-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⋖ℋ 𝐵 → ∃𝑥 ∈ HAtoms (𝐴 ∨ℋ 𝑥) = 𝐵) | ||
Theorem | cvbr4i 30630* | An alternate way to express the covering property. (Contributed by NM, 30-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ∃𝑥 ∈ HAtoms (𝐴 ∨ℋ 𝑥) = 𝐵)) | ||
Theorem | cvexchlem 30631 | Lemma for cvexchi 30632. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵)) | ||
Theorem | cvexchi 30632 | The Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵)) | ||
Theorem | chrelat2 30633* | A consequence of relative atomicity. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵))) | ||
Theorem | chrelat3 30634* | A consequence of relative atomicity. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵))) | ||
Theorem | chrelat3i 30635* | A consequence of the relative atomicity of Hilbert space: the ordering of Hilbert lattice elements is completely determined by the atoms they majorize. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | ||
Theorem | chrelat4i 30636* | A consequence of relative atomicity. Extensionality principle: two lattice elements are equal iff they majorize the same atoms. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | ||
Theorem | cvexch 30637 | The Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | cvp 30638 | The Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → ((𝐴 ∩ 𝐵) = 0ℋ ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | atnssm0 30639 | The meet of a Hilbert lattice element and an incomparable atom is the zero subspace. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (¬ 𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 0ℋ)) | ||
Theorem | atnemeq0 30640 | The meet of distinct atoms is the zero subspace. (Contributed by NM, 25-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ≠ 𝐵 ↔ (𝐴 ∩ 𝐵) = 0ℋ)) | ||
Theorem | atssma 30641 | The meet with an atom's superset is the atom. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ∈ HAtoms)) | ||
Theorem | atcv0eq 30642 | Two atoms covering the zero subspace are equal. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (0ℋ ⋖ℋ (𝐴 ∨ℋ 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | atcv1 30643 | Two atoms covering the zero subspace are equal. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐴 ⋖ℋ (𝐵 ∨ℋ 𝐶)) → (𝐴 = 0ℋ ↔ 𝐵 = 𝐶)) | ||
Theorem | atexch 30644 | The Hilbert lattice satisfies the atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem related to vector analysis was originally proved by Hermann Grassmann in 1862. Also Definition 3.4-3(b) in [MegPav2000] p. 2345 (PDF p. 8) (use atnemeq0 30640 to obtain atom inequality). (Contributed by NM, 27-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | atomli 30645 | An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition 3.2.17 of [PtakPulmannova] p. 66. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐵 ∈ HAtoms → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0ℋ})) | ||
Theorem | atoml2i 30646 | An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition P8(ii) of [BeltramettiCassinelli1] p. 400. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ ¬ 𝐵 ⊆ 𝐴) → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms) | ||
Theorem | atordi 30647 | An ordering law for a Hilbert lattice atom and a commuting subspace. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ⊆ 𝐴 ∨ 𝐵 ⊆ (⊥‘𝐴))) | ||
Theorem | atcvatlem 30648 | Lemma for atcvati 30649. (Contributed by NM, 27-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐴 ≠ 0ℋ ∧ 𝐴 ⊊ (𝐵 ∨ℋ 𝐶))) → (¬ 𝐵 ⊆ 𝐴 → 𝐴 ∈ HAtoms)) | ||
Theorem | atcvati 30649 | A nonzero Hilbert lattice element less than the join of two atoms is an atom. (Contributed by NM, 28-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0ℋ ∧ 𝐴 ⊊ (𝐵 ∨ℋ 𝐶)) → 𝐴 ∈ HAtoms)) | ||
Theorem | atcvat2i 30650 | A Hilbert lattice element covered by the join of two distinct atoms is an atom. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ 𝐴 ⋖ℋ (𝐵 ∨ℋ 𝐶)) → 𝐴 ∈ HAtoms)) | ||
Theorem | atord 30651 | An ordering law for a Hilbert lattice atom and a commuting subspace. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ⊆ 𝐴 ∨ 𝐵 ⊆ (⊥‘𝐴))) | ||
Theorem | atcvat2 30652 | A Hilbert lattice element covered by the join of two distinct atoms is an atom. (Contributed by NM, 29-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ 𝐴 ⋖ℋ (𝐵 ∨ℋ 𝐶)) → 𝐴 ∈ HAtoms)) | ||
Theorem | chirredlem1 30653* | Lemma for chirredi 30657. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (((𝑝 ∈ HAtoms ∧ (𝑞 ∈ Cℋ ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ 𝐴) ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑝 ∩ (⊥‘𝑟)) = 0ℋ) | ||
Theorem | chirredlem2 30654* | Lemma for chirredi 30657. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ Cℋ ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ 𝐴) ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 ∨ℋ 𝑞)) = 𝑞) | ||
Theorem | chirredlem3 30655* | Lemma for chirredi 30657. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 ⊆ 𝐴 → 𝑟 = 𝑝)) | ||
Theorem | chirredlem4 30656* | Lemma for chirredi 30657. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 = 𝑝 ∨ 𝑟 = 𝑞)) | ||
Theorem | chirredi 30657* | The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) ⇒ ⊢ (𝐴 = 0ℋ ∨ 𝐴 = ℋ) | ||
Theorem | chirred 30658* | The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 16-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥) → (𝐴 = 0ℋ ∨ 𝐴 = ℋ)) | ||
Theorem | atcvat3i 30659 | A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴) ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐶)) → (𝐴 ∩ (𝐵 ∨ℋ 𝐶)) ∈ HAtoms)) | ||
Theorem | atcvat4i 30660* | A condition implying existence of an atom with the properties shown. Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0ℋ ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ (𝐶 ∨ℋ 𝑥)))) | ||
Theorem | atdmd 30661 | Two Hilbert lattice elements have the dual modular pair property if the first is an atom. Theorem 7.6(c) of [MaedaMaeda] p. 31. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | atmd 30662 | Two Hilbert lattice elements have the modular pair property if the first is an atom. Theorem 7.6(b) of [MaedaMaeda] p. 31. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | atmd2 30663 | Two Hilbert lattice elements have the dual modular pair property if the second is an atom. Part of Exercise 6 of [Kalmbach] p. 103. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | atabsi 30664 | Absorption of an incomparable atom. Similar to Exercise 7.1 of [MaedaMaeda] p. 34. (Contributed by NM, 15-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ 𝐵) = (𝐴 ∩ 𝐵))) | ||
Theorem | atabs2i 30665 | Absorption of an incomparable atom. (Contributed by NM, 18-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = 𝐴)) | ||
Theorem | mdsymlem1 30666* | Lemma for mdsymi 30674. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (((𝑝 ∈ Cℋ ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → 𝑝 ⊆ 𝐴) | ||
Theorem | mdsymlem2 30667* | Lemma for mdsymi 30674. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (((𝑝 ∈ HAtoms ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐵 ≠ 0ℋ → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)))) | ||
Theorem | mdsymlem3 30668* | Lemma for mdsymi 30674. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝐴 ≠ 0ℋ) → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) | ||
Theorem | mdsymlem4 30669* | Lemma for mdsymi 30674. This is the forward direction of Lemma 4(i) of [Maeda] p. 168. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (𝑝 ∈ HAtoms → ((𝐵 𝑀ℋ* 𝐴 ∧ ((𝐴 ≠ 0ℋ ∧ 𝐵 ≠ 0ℋ) ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)))) | ||
Theorem | mdsymlem5 30670* | Lemma for mdsymi 30674. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (((𝑐 ∈ Cℋ ∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))))) | ||
Theorem | mdsymlem6 30671* | Lemma for mdsymi 30674. This is the converse direction of Lemma 4(i) of [Maeda] p. 168, and is based on the proof of Theorem 1(d) to (e) of [Maeda] p. 167. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → 𝐵 𝑀ℋ* 𝐴) | ||
Theorem | mdsymlem7 30672* | Lemma for mdsymi 30674. Lemma 4(i) of [Maeda] p. 168. Note that Maeda's 1965 definition of dual modular pair has reversed arguments compared to the later (1970) definition given in Remark 29.6 of [MaedaMaeda] p. 130, which is the one that we use. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((𝐴 ≠ 0ℋ ∧ 𝐵 ≠ 0ℋ) → (𝐵 𝑀ℋ* 𝐴 ↔ ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))))) | ||
Theorem | mdsymlem8 30673* | Lemma for mdsymi 30674. Lemma 4(ii) of [Maeda] p. 168. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((𝐴 ≠ 0ℋ ∧ 𝐵 ≠ 0ℋ) → (𝐵 𝑀ℋ* 𝐴 ↔ 𝐴 𝑀ℋ* 𝐵)) | ||
Theorem | mdsymi 30674 | M-symmetry of the Hilbert lattice. Lemma 5 of [Maeda] p. 168. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴) | ||
Theorem | mdsym 30675 | M-symmetry of the Hilbert lattice. Lemma 5 of [Maeda] p. 168. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴)) | ||
Theorem | dmdsym 30676 | Dual M-symmetry of the Hilbert lattice. (Contributed by NM, 25-Jul-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ 𝐵 𝑀ℋ* 𝐴)) | ||
Theorem | atdmd2 30677 | Two Hilbert lattice elements have the dual modular pair property if the second is an atom. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | sumdmdii 30678 | If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in [MaedaMaeda] p. 139. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | cmmdi 30679 | Commuting subspaces form a modular pair. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | cmdmdi 30680 | Commuting subspaces form a dual modular pair. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | sumdmdlem 30681 | Lemma for sumdmdi 30683. The span of vector 𝐶 not in the subspace sum is "trimmed off." (Contributed by NM, 18-Dec-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵)) → ((𝐵 +ℋ (span‘{𝐶})) ∩ 𝐴) = (𝐵 ∩ 𝐴)) | ||
Theorem | sumdmdlem2 30682* | Lemma for sumdmdi 30683. (Contributed by NM, 23-Dec-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑥 ∈ HAtoms ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | sumdmdi 30683 | The subspace sum of two Hilbert lattice elements is closed iff the elements are a dual modular pair. Theorem 2 of [Holland] p. 1519. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) ↔ 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | dmdbr4ati 30684* | Dual modular pair property in terms of atoms. (Contributed by NM, 15-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) | ||
Theorem | dmdbr5ati 30685* | Dual modular pair property in terms of atoms. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | ||
Theorem | dmdbr6ati 30686* | Dual modular pair property in terms of atoms. The modular law takes the form of the shearing identity. (Contributed by NM, 18-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥)) | ||
Theorem | dmdbr7ati 30687* | Dual modular pair property in terms of atoms. (Contributed by NM, 18-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) | ||
Theorem | mdoc1i 30688 | Orthocomplements form a modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 𝑀ℋ (⊥‘𝐴) | ||
Theorem | mdoc2i 30689 | Orthocomplements form a modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) 𝑀ℋ 𝐴 | ||
Theorem | dmdoc1i 30690 | Orthocomplements form a dual modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 𝑀ℋ* (⊥‘𝐴) | ||
Theorem | dmdoc2i 30691 | Orthocomplements form a dual modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) 𝑀ℋ* 𝐴 | ||
Theorem | mdcompli 30692 | A condition equivalent to the modular pair property. Part of proof of Theorem 1.14 of [MaedaMaeda] p. 4. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) | ||
Theorem | dmdcompli 30693 | A condition equivalent to the dual modular pair property. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) | ||
Theorem | mddmdin0i 30694* | If dual modular implies modular whenever meet is zero, then dual modular implies modular for arbitrary lattice elements. This theorem is needed for the remark after Lemma 7 of [Holland] p. 1524 to hold. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ ((𝑥 𝑀ℋ* 𝑦 ∧ (𝑥 ∩ 𝑦) = 0ℋ) → 𝑥 𝑀ℋ 𝑦) ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | cdjreui 30695* | A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 20-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) | ||
Theorem | cdj1i 30696* | Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) => (2) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 21-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (∃𝑤 ∈ ℝ (0 < 𝑤 ∧ ∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) + (normℎ‘𝑣)) ≤ (𝑤 · (normℎ‘(𝑦 +ℎ 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → 𝑥 ≤ (normℎ‘(𝑦 −ℎ 𝑧))))) | ||
Theorem | cdj3lem1 30697* | A property of "𝐴 and 𝐵 are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) + (normℎ‘𝑧)) ≤ (𝑥 · (normℎ‘(𝑦 +ℎ 𝑧)))) → (𝐴 ∩ 𝐵) = 0ℋ) | ||
Theorem | cdj3lem2 30698* | Lemma for cdj3i 30704. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) | ||
Theorem | cdj3lem2a 30699* | Lemma for cdj3i 30704. Closure of the first-component function 𝑆. (Contributed by NM, 25-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) | ||
Theorem | cdj3lem2b 30700* | Lemma for cdj3i 30704. The first-component function 𝑆 is bounded if the subspaces are completely disjoint. (Contributed by NM, 26-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |