| Metamath
Proof Explorer Theorem List (p. 307 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nvinv 30601 | Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑀 = (inv‘𝐺) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = (𝑀‘𝐴)) | ||
| Theorem | nvinvfval 30602 | Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008.) (New usage is discouraged.) |
| ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (𝑆 ∘ ◡(2nd ↾ ({-1} × V))) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺)) | ||
| Theorem | nvm 30603 | Vector subtraction in terms of group division operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝑁𝐵)) | ||
| Theorem | nvmval 30604 | Value of vector subtraction on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝐺(-1𝑆𝐵))) | ||
| Theorem | nvmval2 30605 | Value of vector subtraction on a normed complex vector space. (Contributed by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = ((-1𝑆𝐵)𝐺𝐴)) | ||
| Theorem | nvmfval 30606* | Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(-1𝑆𝑦)))) | ||
| Theorem | nvmf 30607 | Mapping for the vector subtraction operation. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋) | ||
| Theorem | nvmcl 30608 | Closure law for the vector subtraction operation of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) ∈ 𝑋) | ||
| Theorem | nvnnncan1 30609 | Cancellation law for vector subtraction. (nnncan1 11418 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑀(𝐴𝑀𝐶)) = (𝐶𝑀𝐵)) | ||
| Theorem | nvmdi 30610 | Distributive law for scalar product over subtraction. (Contributed by NM, 14-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶))) | ||
| Theorem | nvnegneg 30611 | Double negative of a vector. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴) | ||
| Theorem | nvmul0or 30612 | If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑆𝐵) = 𝑍 ↔ (𝐴 = 0 ∨ 𝐵 = 𝑍))) | ||
| Theorem | nvrinv 30613 | A vector minus itself. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐴)) = 𝑍) | ||
| Theorem | nvlinv 30614 | Minus a vector plus itself. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺𝐴) = 𝑍) | ||
| Theorem | nvpncan2 30615 | Cancellation law for vector subtraction. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = 𝐵) | ||
| Theorem | nvpncan 30616 | Cancellation law for vector subtraction. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐵) = 𝐴) | ||
| Theorem | nvaddsub 30617 | Commutative/associative law for vector addition and subtraction. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑀𝐶) = ((𝐴𝑀𝐶)𝐺𝐵)) | ||
| Theorem | nvnpcan 30618 | Cancellation law for a normed complex vector space. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑀𝐵)𝐺𝐵) = 𝐴) | ||
| Theorem | nvaddsub4 30619 | Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 8-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷))) | ||
| Theorem | nvmeq0 30620 | The difference between two vectors is zero iff they are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑀𝐵) = 𝑍 ↔ 𝐴 = 𝐵)) | ||
| Theorem | nvmid 30621 | A vector minus itself is the zero vector. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑀𝐴) = 𝑍) | ||
| Theorem | nvf 30622 | Mapping for the norm function. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ) | ||
| Theorem | nvcl 30623 | The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) | ||
| Theorem | nvcli 30624 | The norm of a normed complex vector space is a real number. (Contributed by NM, 20-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝐴 ∈ 𝑋 ⇒ ⊢ (𝑁‘𝐴) ∈ ℝ | ||
| Theorem | nvs 30625 | Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) | ||
| Theorem | nvsge0 30626 | The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑆𝐵)) = (𝐴 · (𝑁‘𝐵))) | ||
| Theorem | nvm1 30627 | The norm of the negative of a vector. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(-1𝑆𝐴)) = (𝑁‘𝐴)) | ||
| Theorem | nvdif 30628 | The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴)))) | ||
| Theorem | nvpi 30629 | The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴)))) | ||
| Theorem | nvz0 30630 | The norm of a zero vector is zero. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → (𝑁‘𝑍) = 0) | ||
| Theorem | nvz 30631 | The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 𝑍)) | ||
| Theorem | nvtri 30632 | Triangle inequality for the norm of a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) | ||
| Theorem | nvmtri 30633 | Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) | ||
| Theorem | nvabs 30634 | Norm difference property of a normed complex vector space. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘((𝑁‘𝐴) − (𝑁‘𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵)))) | ||
| Theorem | nvge0 30635 | The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) | ||
| Theorem | nvgt0 30636 | A nonzero norm is positive. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴 ≠ 𝑍 ↔ 0 < (𝑁‘𝐴))) | ||
| Theorem | nv1 30637 | From any nonzero vector, construct a vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → (𝑁‘((1 / (𝑁‘𝐴))𝑆𝐴)) = 1) | ||
| Theorem | nvop 30638 | A complex inner product space in terms of ordered pair components. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
| ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) | ||
| Theorem | cnnv 30639 | The set of complex numbers is a normed complex vector space. The vector operation is +, the scalar product is ·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ 𝑈 ∈ NrmCVec | ||
| Theorem | cnnvg 30640 | The vector addition (group) operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ + = ( +𝑣 ‘𝑈) | ||
| Theorem | cnnvba 30641 | The base set of the normed complex vector space of complex numbers. (Contributed by NM, 7-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ ℂ = (BaseSet‘𝑈) | ||
| Theorem | cnnvs 30642 | The scalar product operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ · = ( ·𝑠OLD ‘𝑈) | ||
| Theorem | cnnvnm 30643 | The norm operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ abs = (normCV‘𝑈) | ||
| Theorem | cnnvm 30644 | The vector subtraction operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ − = ( −𝑣 ‘𝑈) | ||
| Theorem | elimnv 30645 | Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 | ||
| Theorem | elimnvu 30646 | Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.) |
| ⊢ if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) ∈ NrmCVec | ||
| Theorem | imsval 30647 | Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) | ||
| Theorem | imsdval 30648 | Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵))) | ||
| Theorem | imsdval2 30649 | Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝐺(-1𝑆𝐵)))) | ||
| Theorem | nvnd 30650 | The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐷𝑍)) | ||
| Theorem | imsdf 30651 | Mapping for the induced metric distance function of a normed complex vector space. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ) | ||
| Theorem | imsmetlem 30652 | Lemma for imsmet 30653. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = (inv‘𝐺) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ 𝐷 ∈ (Met‘𝑋) | ||
| Theorem | imsmet 30653 | The induced metric of a normed complex vector space is a metric space. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) | ||
| Theorem | imsxmet 30654 | The induced metric of a normed complex vector space is an extended metric space. (Contributed by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋)) | ||
| Theorem | cnims 30655 | The metric induced on the complex numbers. cnmet 24675 proves that it is a metric. (Contributed by Steve Rodriguez, 5-Dec-2006.) (Revised by NM, 15-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 & ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ 𝐷 = (IndMet‘𝑈) | ||
| Theorem | vacn 30656 | Vector addition is jointly continuous in both arguments. (Contributed by Jeff Hankins, 16-Jun-2009.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
| Theorem | nmcvcn 30657 | The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.) |
| ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | nmcnc 30658 | The norm of a normed complex vector space is a continuous function to ℂ. (For ℝ, see nmcvcn 30657.) (Contributed by NM, 12-Aug-2007.) (New usage is discouraged.) |
| ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | smcnlem 30659* | Lemma for smcn 30660. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑇 = (1 / (1 + ((((𝑁‘𝑦) + (abs‘𝑥)) + 1) / 𝑟))) ⇒ ⊢ 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) | ||
| Theorem | smcn 30660 | Scalar multiplication is jointly continuous in both arguments. (Contributed by NM, 16-Jun-2009.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) | ||
| Theorem | vmcn 30661 | Vector subtraction is jointly continuous in both arguments. (Contributed by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑀 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
| Syntax | cdip 30662 | Extend class notation with the class inner product functions. |
| class ·𝑖OLD | ||
| Definition | df-dip 30663* | Define a function that maps a normed complex vector space to its inner product operation in case its norm satisfies the parallelogram identity (otherwise the operation is still defined, but not meaningful). Based on Exercise 4(a) of [ReedSimon] p. 63 and Theorem 6.44 of [Ponnusamy] p. 361. Vector addition is (1st ‘𝑤), the scalar product is (2nd ‘𝑤), and the norm is 𝑛. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.) |
| ⊢ ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) / 4))) | ||
| Theorem | dipfval 30664* | The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) | ||
| Theorem | ipval 30665* | Value of the inner product. The definition is meaningful for normed complex vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law, although for convenience we define it for any normed complex vector space. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, the norm is 𝑁, and the set of vectors is 𝑋. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4)) | ||
| Theorem | ipval2lem2 30666 | Lemma for ipval3 30671. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → ((𝑁‘(𝐴𝐺(𝐶𝑆𝐵)))↑2) ∈ ℝ) | ||
| Theorem | ipval2lem3 30667 | Lemma for ipval3 30671. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℝ) | ||
| Theorem | ipval2lem4 30668 | Lemma for ipval3 30671. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → ((𝑁‘(𝐴𝐺(𝐶𝑆𝐵)))↑2) ∈ ℂ) | ||
| Theorem | ipval2 30669 | Expansion of the inner product value ipval 30665. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) | ||
| Theorem | 4ipval2 30670 | Four times the inner product value ipval3 30671, useful for simplifying certain proofs. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (4 · (𝐴𝑃𝐵)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))) | ||
| Theorem | ipval3 30671 | Expansion of the inner product value ipval 30665. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4)) | ||
| Theorem | ipidsq 30672 | The inner product of a vector with itself is the square of the vector's norm. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2)) | ||
| Theorem | ipnm 30673 | Norm expressed in terms of inner product. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (√‘(𝐴𝑃𝐴))) | ||
| Theorem | dipcl 30674 | An inner product is a complex number. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) | ||
| Theorem | ipf 30675 | Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ) | ||
| Theorem | dipcj 30676 | The complex conjugate of an inner product reverses its arguments. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴)) | ||
| Theorem | ipipcj 30677 | An inner product times its conjugate. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2)) | ||
| Theorem | diporthcom 30678 | Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)) | ||
| Theorem | dip0r 30679 | Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝑍) = 0) | ||
| Theorem | dip0l 30680 | Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝑃𝐴) = 0) | ||
| Theorem | ipz 30681 | The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝐴𝑃𝐴) = 0 ↔ 𝐴 = 𝑍)) | ||
| Theorem | dipcn 30682 | Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
| Syntax | css 30683 | Extend class notation with the class of all subspaces of normed complex vector spaces. |
| class SubSp | ||
| Definition | df-ssp 30684* | Define the class of all subspaces of normed complex vector spaces. (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
| ⊢ SubSp = (𝑢 ∈ NrmCVec ↦ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ ( +𝑣 ‘𝑢) ∧ ( ·𝑠OLD ‘𝑤) ⊆ ( ·𝑠OLD ‘𝑢) ∧ (normCV‘𝑤) ⊆ (normCV‘𝑢))}) | ||
| Theorem | sspval 30685* | The set of all subspaces of a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)}) | ||
| Theorem | isssp 30686 | The predicate "is a subspace." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐹 = ( +𝑣 ‘𝑊) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) | ||
| Theorem | sspid 30687 | A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻) | ||
| Theorem | sspnv 30688 | A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) | ||
| Theorem | sspba 30689 | The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) | ||
| Theorem | sspg 30690 | Vector addition on a subspace is a restriction of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐹 = ( +𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) | ||
| Theorem | sspgval 30691 | Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐹 = ( +𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) | ||
| Theorem | ssps 30692 | Scalar multiplication on a subspace is a restriction of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌))) | ||
| Theorem | sspsval 30693 | Scalar multiplication on a subspace in terms of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑌)) → (𝐴𝑅𝐵) = (𝐴𝑆𝐵)) | ||
| Theorem | sspmlem 30694* | Lemma for sspm 30696 and others. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) & ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) & ⊢ (𝑊 ∈ NrmCVec → 𝐹:(𝑌 × 𝑌)⟶𝑅) & ⊢ (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶𝑆) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) | ||
| Theorem | sspmval 30695 | Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝐿 = ( −𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵)) | ||
| Theorem | sspm 30696 | Vector subtraction on a subspace is a restriction of vector subtraction on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝐿 = ( −𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐿 = (𝑀 ↾ (𝑌 × 𝑌))) | ||
| Theorem | sspz 30697 | The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑄 = (0vec‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 = 𝑍) | ||
| Theorem | sspn 30698 | The norm on a subspace is a restriction of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 = (𝑁 ↾ 𝑌)) | ||
| Theorem | sspnval 30699 | The norm on a subspace in terms of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ∧ 𝐴 ∈ 𝑌) → (𝑀‘𝐴) = (𝑁‘𝐴)) | ||
| Theorem | sspimsval 30700 | The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |