| Metamath
Proof Explorer Theorem List (p. 307 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nvgt0 30601 | A nonzero norm is positive. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴 ≠ 𝑍 ↔ 0 < (𝑁‘𝐴))) | ||
| Theorem | nv1 30602 | From any nonzero vector, construct a vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → (𝑁‘((1 / (𝑁‘𝐴))𝑆𝐴)) = 1) | ||
| Theorem | nvop 30603 | A complex inner product space in terms of ordered pair components. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
| ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) | ||
| Theorem | cnnv 30604 | The set of complex numbers is a normed complex vector space. The vector operation is +, the scalar product is ·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ 𝑈 ∈ NrmCVec | ||
| Theorem | cnnvg 30605 | The vector addition (group) operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ + = ( +𝑣 ‘𝑈) | ||
| Theorem | cnnvba 30606 | The base set of the normed complex vector space of complex numbers. (Contributed by NM, 7-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ ℂ = (BaseSet‘𝑈) | ||
| Theorem | cnnvs 30607 | The scalar product operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ · = ( ·𝑠OLD ‘𝑈) | ||
| Theorem | cnnvnm 30608 | The norm operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ abs = (normCV‘𝑈) | ||
| Theorem | cnnvm 30609 | The vector subtraction operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ − = ( −𝑣 ‘𝑈) | ||
| Theorem | elimnv 30610 | Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 | ||
| Theorem | elimnvu 30611 | Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.) |
| ⊢ if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) ∈ NrmCVec | ||
| Theorem | imsval 30612 | Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) | ||
| Theorem | imsdval 30613 | Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵))) | ||
| Theorem | imsdval2 30614 | Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝐺(-1𝑆𝐵)))) | ||
| Theorem | nvnd 30615 | The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐷𝑍)) | ||
| Theorem | imsdf 30616 | Mapping for the induced metric distance function of a normed complex vector space. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ) | ||
| Theorem | imsmetlem 30617 | Lemma for imsmet 30618. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = (inv‘𝐺) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ 𝐷 ∈ (Met‘𝑋) | ||
| Theorem | imsmet 30618 | The induced metric of a normed complex vector space is a metric space. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) | ||
| Theorem | imsxmet 30619 | The induced metric of a normed complex vector space is an extended metric space. (Contributed by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋)) | ||
| Theorem | cnims 30620 | The metric induced on the complex numbers. cnmet 24708 proves that it is a metric. (Contributed by Steve Rodriguez, 5-Dec-2006.) (Revised by NM, 15-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 & ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ 𝐷 = (IndMet‘𝑈) | ||
| Theorem | vacn 30621 | Vector addition is jointly continuous in both arguments. (Contributed by Jeff Hankins, 16-Jun-2009.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
| Theorem | nmcvcn 30622 | The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.) |
| ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | nmcnc 30623 | The norm of a normed complex vector space is a continuous function to ℂ. (For ℝ, see nmcvcn 30622.) (Contributed by NM, 12-Aug-2007.) (New usage is discouraged.) |
| ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | smcnlem 30624* | Lemma for smcn 30625. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑇 = (1 / (1 + ((((𝑁‘𝑦) + (abs‘𝑥)) + 1) / 𝑟))) ⇒ ⊢ 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) | ||
| Theorem | smcn 30625 | Scalar multiplication is jointly continuous in both arguments. (Contributed by NM, 16-Jun-2009.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) | ||
| Theorem | vmcn 30626 | Vector subtraction is jointly continuous in both arguments. (Contributed by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑀 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
| Syntax | cdip 30627 | Extend class notation with the class inner product functions. |
| class ·𝑖OLD | ||
| Definition | df-dip 30628* | Define a function that maps a normed complex vector space to its inner product operation in case its norm satisfies the parallelogram identity (otherwise the operation is still defined, but not meaningful). Based on Exercise 4(a) of [ReedSimon] p. 63 and Theorem 6.44 of [Ponnusamy] p. 361. Vector addition is (1st ‘𝑤), the scalar product is (2nd ‘𝑤), and the norm is 𝑛. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.) |
| ⊢ ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) / 4))) | ||
| Theorem | dipfval 30629* | The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) | ||
| Theorem | ipval 30630* | Value of the inner product. The definition is meaningful for normed complex vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law, although for convenience we define it for any normed complex vector space. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, the norm is 𝑁, and the set of vectors is 𝑋. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4)) | ||
| Theorem | ipval2lem2 30631 | Lemma for ipval3 30636. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → ((𝑁‘(𝐴𝐺(𝐶𝑆𝐵)))↑2) ∈ ℝ) | ||
| Theorem | ipval2lem3 30632 | Lemma for ipval3 30636. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℝ) | ||
| Theorem | ipval2lem4 30633 | Lemma for ipval3 30636. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → ((𝑁‘(𝐴𝐺(𝐶𝑆𝐵)))↑2) ∈ ℂ) | ||
| Theorem | ipval2 30634 | Expansion of the inner product value ipval 30630. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) | ||
| Theorem | 4ipval2 30635 | Four times the inner product value ipval3 30636, useful for simplifying certain proofs. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (4 · (𝐴𝑃𝐵)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))) | ||
| Theorem | ipval3 30636 | Expansion of the inner product value ipval 30630. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4)) | ||
| Theorem | ipidsq 30637 | The inner product of a vector with itself is the square of the vector's norm. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2)) | ||
| Theorem | ipnm 30638 | Norm expressed in terms of inner product. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (√‘(𝐴𝑃𝐴))) | ||
| Theorem | dipcl 30639 | An inner product is a complex number. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) | ||
| Theorem | ipf 30640 | Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ) | ||
| Theorem | dipcj 30641 | The complex conjugate of an inner product reverses its arguments. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴)) | ||
| Theorem | ipipcj 30642 | An inner product times its conjugate. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2)) | ||
| Theorem | diporthcom 30643 | Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)) | ||
| Theorem | dip0r 30644 | Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝑍) = 0) | ||
| Theorem | dip0l 30645 | Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝑃𝐴) = 0) | ||
| Theorem | ipz 30646 | The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝐴𝑃𝐴) = 0 ↔ 𝐴 = 𝑍)) | ||
| Theorem | dipcn 30647 | Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
| Syntax | css 30648 | Extend class notation with the class of all subspaces of normed complex vector spaces. |
| class SubSp | ||
| Definition | df-ssp 30649* | Define the class of all subspaces of normed complex vector spaces. (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
| ⊢ SubSp = (𝑢 ∈ NrmCVec ↦ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ ( +𝑣 ‘𝑢) ∧ ( ·𝑠OLD ‘𝑤) ⊆ ( ·𝑠OLD ‘𝑢) ∧ (normCV‘𝑤) ⊆ (normCV‘𝑢))}) | ||
| Theorem | sspval 30650* | The set of all subspaces of a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)}) | ||
| Theorem | isssp 30651 | The predicate "is a subspace." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐹 = ( +𝑣 ‘𝑊) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) | ||
| Theorem | sspid 30652 | A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻) | ||
| Theorem | sspnv 30653 | A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) | ||
| Theorem | sspba 30654 | The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) | ||
| Theorem | sspg 30655 | Vector addition on a subspace is a restriction of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐹 = ( +𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) | ||
| Theorem | sspgval 30656 | Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐹 = ( +𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) | ||
| Theorem | ssps 30657 | Scalar multiplication on a subspace is a restriction of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌))) | ||
| Theorem | sspsval 30658 | Scalar multiplication on a subspace in terms of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑌)) → (𝐴𝑅𝐵) = (𝐴𝑆𝐵)) | ||
| Theorem | sspmlem 30659* | Lemma for sspm 30661 and others. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) & ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) & ⊢ (𝑊 ∈ NrmCVec → 𝐹:(𝑌 × 𝑌)⟶𝑅) & ⊢ (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶𝑆) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) | ||
| Theorem | sspmval 30660 | Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝐿 = ( −𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵)) | ||
| Theorem | sspm 30661 | Vector subtraction on a subspace is a restriction of vector subtraction on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝐿 = ( −𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐿 = (𝑀 ↾ (𝑌 × 𝑌))) | ||
| Theorem | sspz 30662 | The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑄 = (0vec‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 = 𝑍) | ||
| Theorem | sspn 30663 | The norm on a subspace is a restriction of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 = (𝑁 ↾ 𝑌)) | ||
| Theorem | sspnval 30664 | The norm on a subspace in terms of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ∧ 𝐴 ∈ 𝑌) → (𝑀‘𝐴) = (𝑁‘𝐴)) | ||
| Theorem | sspimsval 30665 | The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵)) | ||
| Theorem | sspims 30666 | The induced metric on a subspace is a restriction of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))) | ||
| Syntax | clno 30667 | Extend class notation with the class of linear operators on normed complex vector spaces. |
| class LnOp | ||
| Syntax | cnmoo 30668 | Extend class notation with the class of operator norms on normed complex vector spaces. |
| class normOpOLD | ||
| Syntax | cblo 30669 | Extend class notation with the class of bounded linear operators on normed complex vector spaces. |
| class BLnOp | ||
| Syntax | c0o 30670 | Extend class notation with the class of zero operators on normed complex vector spaces. |
| class 0op | ||
| Definition | df-lno 30671* | Define the class of linear operators between two normed complex vector spaces. In the literature, an operator may be a partial function, i.e., the domain of an operator is not necessarily the entire vector space. However, since the domain of a linear operator is a vector subspace, we define it with a complete function for convenience and will use subset relations to specify the partial function case. (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.) |
| ⊢ LnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD ‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD ‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧))}) | ||
| Definition | df-nmoo 30672* | Define the norm of an operator between two normed complex vector spaces. This definition produces an operator norm function for each pair of vector spaces 〈𝑢, 𝑤〉. Based on definition of linear operator norm in [AkhiezerGlazman] p. 39, although we define it for all operators for convenience. It isn't necessarily meaningful for nonlinear operators, since it doesn't take into account operator values at vectors with norm greater than 1. See Equation 2 of [Kreyszig] p. 92 for a definition that does (although it ignores the value at the zero vector). However, operator norms are rarely if ever used for nonlinear operators. (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.) |
| ⊢ normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV‘𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))}, ℝ*, < ))) | ||
| Definition | df-blo 30673* | Define the class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.) |
| ⊢ BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞}) | ||
| Definition | df-0o 30674* | Define the zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
| ⊢ 0op = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ ((BaseSet‘𝑢) × {(0vec‘𝑤)})) | ||
| Syntax | caj 30675 | Adjoint of an operator. |
| class adj | ||
| Syntax | chmo 30676 | Set of Hermitional (self-adjoint) operators. |
| class HmOp | ||
| Definition | df-aj 30677* | Define the adjoint of an operator (if it exists). The domain of 𝑈adj𝑊 is the set of all operators from 𝑈 to 𝑊 that have an adjoint. Definition 3.9-1 of [Kreyszig] p. 196, although we don't require that 𝑈 and 𝑊 be Hilbert spaces nor that the operators be linear. Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
| ⊢ adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {〈𝑡, 𝑠〉 ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡‘𝑥)(·𝑖OLD‘𝑤)𝑦) = (𝑥(·𝑖OLD‘𝑢)(𝑠‘𝑦)))}) | ||
| Definition | df-hmo 30678* | Define the set of Hermitian (self-adjoint) operators on a normed complex vector space (normally a Hilbert space). Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
| ⊢ HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡}) | ||
| Theorem | lnoval 30679* | The set of linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐻 = ( +𝑣 ‘𝑊) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐿 = {𝑡 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑡‘𝑦))𝐻(𝑡‘𝑧))}) | ||
| Theorem | islno 30680* | The predicate "is a linear operator." (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐻 = ( +𝑣 ‘𝑊) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐿 ↔ (𝑇:𝑋⟶𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇‘𝑦))𝐻(𝑇‘𝑧))))) | ||
| Theorem | lnolin 30681 | Basic linearity property of a linear operator. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐻 = ( +𝑣 ‘𝑊) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇‘𝐵))𝐻(𝑇‘𝐶))) | ||
| Theorem | lnof 30682 | A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) | ||
| Theorem | lno0 30683 | The value of a linear operator at zero is zero. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑄 = (0vec‘𝑈) & ⊢ 𝑍 = (0vec‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) = 𝑍) | ||
| Theorem | lnocoi 30684 | The composition of two linear operators is linear. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝑀 = (𝑊 LnOp 𝑋) & ⊢ 𝑁 = (𝑈 LnOp 𝑋) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝑋 ∈ NrmCVec & ⊢ 𝑆 ∈ 𝐿 & ⊢ 𝑇 ∈ 𝑀 ⇒ ⊢ (𝑇 ∘ 𝑆) ∈ 𝑁 | ||
| Theorem | lnoadd 30685 | Addition property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐻 = ( +𝑣 ‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) | ||
| Theorem | lnosub 30686 | Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = ( −𝑣 ‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇‘𝐴)𝑁(𝑇‘𝐵))) | ||
| Theorem | lnomul 30687 | Scalar multiplication property of a linear operator. (Contributed by NM, 5-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑅𝐵)) = (𝐴𝑆(𝑇‘𝐵))) | ||
| Theorem | nvo00 30688 | Two ways to express a zero operator. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇 = (𝑋 × {𝑍}) ↔ ran 𝑇 = {𝑍})) | ||
| Theorem | nmoofval 30689* | The operator norm function. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))) | ||
| Theorem | nmooval 30690* | The operator norm function. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) | ||
| Theorem | nmosetre 30691* | The set in the supremum of the operator norm definition df-nmoo 30672 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (normCV‘𝑊) ⇒ ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))} ⊆ ℝ) | ||
| Theorem | nmosetn0 30692* | The set in the supremum of the operator norm definition df-nmoo 30672 is nonempty. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑀 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))}) | ||
| Theorem | nmoxr 30693 | The norm of an operator is an extended real. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) ∈ ℝ*) | ||
| Theorem | nmooge0 30694 | The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → 0 ≤ (𝑁‘𝑇)) | ||
| Theorem | nmorepnf 30695 | The norm of an operator is either real or plus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) ≠ +∞)) | ||
| Theorem | nmoreltpnf 30696 | The norm of any operator is real iff it is less than plus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) < +∞)) | ||
| Theorem | nmogtmnf 30697 | The norm of an operator is greater than minus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → -∞ < (𝑁‘𝑇)) | ||
| Theorem | nmoolb 30698 | A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ (𝑁‘𝑇)) | ||
| Theorem | nmoubi 30699* | An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝐴 ∈ ℝ*) → ((𝑁‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 → (𝑀‘(𝑇‘𝑥)) ≤ 𝐴))) | ||
| Theorem | nmoub3i 30700* | An upper bound for an operator norm. (Contributed by NM, 12-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝐴 ∈ ℝ ∧ ∀𝑥 ∈ 𝑋 (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) → (𝑁‘𝑇) ≤ (abs‘𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |