| Metamath
Proof Explorer Theorem List (p. 307 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nvm1 30601 | The norm of the negative of a vector. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(-1𝑆𝐴)) = (𝑁‘𝐴)) | ||
| Theorem | nvdif 30602 | The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴)))) | ||
| Theorem | nvpi 30603 | The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴)))) | ||
| Theorem | nvz0 30604 | The norm of a zero vector is zero. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → (𝑁‘𝑍) = 0) | ||
| Theorem | nvz 30605 | The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 𝑍)) | ||
| Theorem | nvtri 30606 | Triangle inequality for the norm of a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) | ||
| Theorem | nvmtri 30607 | Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) | ||
| Theorem | nvabs 30608 | Norm difference property of a normed complex vector space. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘((𝑁‘𝐴) − (𝑁‘𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵)))) | ||
| Theorem | nvge0 30609 | The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) | ||
| Theorem | nvgt0 30610 | A nonzero norm is positive. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴 ≠ 𝑍 ↔ 0 < (𝑁‘𝐴))) | ||
| Theorem | nv1 30611 | From any nonzero vector, construct a vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → (𝑁‘((1 / (𝑁‘𝐴))𝑆𝐴)) = 1) | ||
| Theorem | nvop 30612 | A complex inner product space in terms of ordered pair components. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
| ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) | ||
| Theorem | cnnv 30613 | The set of complex numbers is a normed complex vector space. The vector operation is +, the scalar product is ·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ 𝑈 ∈ NrmCVec | ||
| Theorem | cnnvg 30614 | The vector addition (group) operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ + = ( +𝑣 ‘𝑈) | ||
| Theorem | cnnvba 30615 | The base set of the normed complex vector space of complex numbers. (Contributed by NM, 7-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ ℂ = (BaseSet‘𝑈) | ||
| Theorem | cnnvs 30616 | The scalar product operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ · = ( ·𝑠OLD ‘𝑈) | ||
| Theorem | cnnvnm 30617 | The norm operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ abs = (normCV‘𝑈) | ||
| Theorem | cnnvm 30618 | The vector subtraction operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ − = ( −𝑣 ‘𝑈) | ||
| Theorem | elimnv 30619 | Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 | ||
| Theorem | elimnvu 30620 | Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.) |
| ⊢ if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) ∈ NrmCVec | ||
| Theorem | imsval 30621 | Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) | ||
| Theorem | imsdval 30622 | Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵))) | ||
| Theorem | imsdval2 30623 | Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝐺(-1𝑆𝐵)))) | ||
| Theorem | nvnd 30624 | The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐷𝑍)) | ||
| Theorem | imsdf 30625 | Mapping for the induced metric distance function of a normed complex vector space. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ) | ||
| Theorem | imsmetlem 30626 | Lemma for imsmet 30627. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = (inv‘𝐺) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ 𝐷 ∈ (Met‘𝑋) | ||
| Theorem | imsmet 30627 | The induced metric of a normed complex vector space is a metric space. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) | ||
| Theorem | imsxmet 30628 | The induced metric of a normed complex vector space is an extended metric space. (Contributed by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋)) | ||
| Theorem | cnims 30629 | The metric induced on the complex numbers. cnmet 24666 proves that it is a metric. (Contributed by Steve Rodriguez, 5-Dec-2006.) (Revised by NM, 15-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 & ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ 𝐷 = (IndMet‘𝑈) | ||
| Theorem | vacn 30630 | Vector addition is jointly continuous in both arguments. (Contributed by Jeff Hankins, 16-Jun-2009.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
| Theorem | nmcvcn 30631 | The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.) |
| ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | nmcnc 30632 | The norm of a normed complex vector space is a continuous function to ℂ. (For ℝ, see nmcvcn 30631.) (Contributed by NM, 12-Aug-2007.) (New usage is discouraged.) |
| ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | smcnlem 30633* | Lemma for smcn 30634. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑇 = (1 / (1 + ((((𝑁‘𝑦) + (abs‘𝑥)) + 1) / 𝑟))) ⇒ ⊢ 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) | ||
| Theorem | smcn 30634 | Scalar multiplication is jointly continuous in both arguments. (Contributed by NM, 16-Jun-2009.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) | ||
| Theorem | vmcn 30635 | Vector subtraction is jointly continuous in both arguments. (Contributed by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑀 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
| Syntax | cdip 30636 | Extend class notation with the class inner product functions. |
| class ·𝑖OLD | ||
| Definition | df-dip 30637* | Define a function that maps a normed complex vector space to its inner product operation in case its norm satisfies the parallelogram identity (otherwise the operation is still defined, but not meaningful). Based on Exercise 4(a) of [ReedSimon] p. 63 and Theorem 6.44 of [Ponnusamy] p. 361. Vector addition is (1st ‘𝑤), the scalar product is (2nd ‘𝑤), and the norm is 𝑛. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.) |
| ⊢ ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) / 4))) | ||
| Theorem | dipfval 30638* | The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) | ||
| Theorem | ipval 30639* | Value of the inner product. The definition is meaningful for normed complex vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law, although for convenience we define it for any normed complex vector space. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, the norm is 𝑁, and the set of vectors is 𝑋. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4)) | ||
| Theorem | ipval2lem2 30640 | Lemma for ipval3 30645. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → ((𝑁‘(𝐴𝐺(𝐶𝑆𝐵)))↑2) ∈ ℝ) | ||
| Theorem | ipval2lem3 30641 | Lemma for ipval3 30645. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℝ) | ||
| Theorem | ipval2lem4 30642 | Lemma for ipval3 30645. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → ((𝑁‘(𝐴𝐺(𝐶𝑆𝐵)))↑2) ∈ ℂ) | ||
| Theorem | ipval2 30643 | Expansion of the inner product value ipval 30639. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) | ||
| Theorem | 4ipval2 30644 | Four times the inner product value ipval3 30645, useful for simplifying certain proofs. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (4 · (𝐴𝑃𝐵)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))) | ||
| Theorem | ipval3 30645 | Expansion of the inner product value ipval 30639. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4)) | ||
| Theorem | ipidsq 30646 | The inner product of a vector with itself is the square of the vector's norm. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2)) | ||
| Theorem | ipnm 30647 | Norm expressed in terms of inner product. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (√‘(𝐴𝑃𝐴))) | ||
| Theorem | dipcl 30648 | An inner product is a complex number. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) | ||
| Theorem | ipf 30649 | Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ) | ||
| Theorem | dipcj 30650 | The complex conjugate of an inner product reverses its arguments. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴)) | ||
| Theorem | ipipcj 30651 | An inner product times its conjugate. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2)) | ||
| Theorem | diporthcom 30652 | Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)) | ||
| Theorem | dip0r 30653 | Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝑍) = 0) | ||
| Theorem | dip0l 30654 | Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝑃𝐴) = 0) | ||
| Theorem | ipz 30655 | The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝐴𝑃𝐴) = 0 ↔ 𝐴 = 𝑍)) | ||
| Theorem | dipcn 30656 | Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
| Syntax | css 30657 | Extend class notation with the class of all subspaces of normed complex vector spaces. |
| class SubSp | ||
| Definition | df-ssp 30658* | Define the class of all subspaces of normed complex vector spaces. (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
| ⊢ SubSp = (𝑢 ∈ NrmCVec ↦ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ ( +𝑣 ‘𝑢) ∧ ( ·𝑠OLD ‘𝑤) ⊆ ( ·𝑠OLD ‘𝑢) ∧ (normCV‘𝑤) ⊆ (normCV‘𝑢))}) | ||
| Theorem | sspval 30659* | The set of all subspaces of a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)}) | ||
| Theorem | isssp 30660 | The predicate "is a subspace." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐹 = ( +𝑣 ‘𝑊) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) | ||
| Theorem | sspid 30661 | A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻) | ||
| Theorem | sspnv 30662 | A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) | ||
| Theorem | sspba 30663 | The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) | ||
| Theorem | sspg 30664 | Vector addition on a subspace is a restriction of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐹 = ( +𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) | ||
| Theorem | sspgval 30665 | Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐹 = ( +𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) | ||
| Theorem | ssps 30666 | Scalar multiplication on a subspace is a restriction of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌))) | ||
| Theorem | sspsval 30667 | Scalar multiplication on a subspace in terms of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑌)) → (𝐴𝑅𝐵) = (𝐴𝑆𝐵)) | ||
| Theorem | sspmlem 30668* | Lemma for sspm 30670 and others. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) & ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) & ⊢ (𝑊 ∈ NrmCVec → 𝐹:(𝑌 × 𝑌)⟶𝑅) & ⊢ (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶𝑆) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) | ||
| Theorem | sspmval 30669 | Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝐿 = ( −𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵)) | ||
| Theorem | sspm 30670 | Vector subtraction on a subspace is a restriction of vector subtraction on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝐿 = ( −𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐿 = (𝑀 ↾ (𝑌 × 𝑌))) | ||
| Theorem | sspz 30671 | The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑄 = (0vec‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 = 𝑍) | ||
| Theorem | sspn 30672 | The norm on a subspace is a restriction of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 = (𝑁 ↾ 𝑌)) | ||
| Theorem | sspnval 30673 | The norm on a subspace in terms of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ∧ 𝐴 ∈ 𝑌) → (𝑀‘𝐴) = (𝑁‘𝐴)) | ||
| Theorem | sspimsval 30674 | The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵)) | ||
| Theorem | sspims 30675 | The induced metric on a subspace is a restriction of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))) | ||
| Syntax | clno 30676 | Extend class notation with the class of linear operators on normed complex vector spaces. |
| class LnOp | ||
| Syntax | cnmoo 30677 | Extend class notation with the class of operator norms on normed complex vector spaces. |
| class normOpOLD | ||
| Syntax | cblo 30678 | Extend class notation with the class of bounded linear operators on normed complex vector spaces. |
| class BLnOp | ||
| Syntax | c0o 30679 | Extend class notation with the class of zero operators on normed complex vector spaces. |
| class 0op | ||
| Definition | df-lno 30680* | Define the class of linear operators between two normed complex vector spaces. In the literature, an operator may be a partial function, i.e., the domain of an operator is not necessarily the entire vector space. However, since the domain of a linear operator is a vector subspace, we define it with a complete function for convenience and will use subset relations to specify the partial function case. (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.) |
| ⊢ LnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD ‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD ‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧))}) | ||
| Definition | df-nmoo 30681* | Define the norm of an operator between two normed complex vector spaces. This definition produces an operator norm function for each pair of vector spaces 〈𝑢, 𝑤〉. Based on definition of linear operator norm in [AkhiezerGlazman] p. 39, although we define it for all operators for convenience. It isn't necessarily meaningful for nonlinear operators, since it doesn't take into account operator values at vectors with norm greater than 1. See Equation 2 of [Kreyszig] p. 92 for a definition that does (although it ignores the value at the zero vector). However, operator norms are rarely if ever used for nonlinear operators. (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.) |
| ⊢ normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV‘𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))}, ℝ*, < ))) | ||
| Definition | df-blo 30682* | Define the class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.) |
| ⊢ BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞}) | ||
| Definition | df-0o 30683* | Define the zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
| ⊢ 0op = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ ((BaseSet‘𝑢) × {(0vec‘𝑤)})) | ||
| Syntax | caj 30684 | Adjoint of an operator. |
| class adj | ||
| Syntax | chmo 30685 | Set of Hermitional (self-adjoint) operators. |
| class HmOp | ||
| Definition | df-aj 30686* | Define the adjoint of an operator (if it exists). The domain of 𝑈adj𝑊 is the set of all operators from 𝑈 to 𝑊 that have an adjoint. Definition 3.9-1 of [Kreyszig] p. 196, although we don't require that 𝑈 and 𝑊 be Hilbert spaces nor that the operators be linear. Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
| ⊢ adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {〈𝑡, 𝑠〉 ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡‘𝑥)(·𝑖OLD‘𝑤)𝑦) = (𝑥(·𝑖OLD‘𝑢)(𝑠‘𝑦)))}) | ||
| Definition | df-hmo 30687* | Define the set of Hermitian (self-adjoint) operators on a normed complex vector space (normally a Hilbert space). Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
| ⊢ HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡}) | ||
| Theorem | lnoval 30688* | The set of linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐻 = ( +𝑣 ‘𝑊) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐿 = {𝑡 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑡‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑡‘𝑦))𝐻(𝑡‘𝑧))}) | ||
| Theorem | islno 30689* | The predicate "is a linear operator." (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐻 = ( +𝑣 ‘𝑊) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐿 ↔ (𝑇:𝑋⟶𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇‘𝑦))𝐻(𝑇‘𝑧))))) | ||
| Theorem | lnolin 30690 | Basic linearity property of a linear operator. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐻 = ( +𝑣 ‘𝑊) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇‘𝐵))𝐻(𝑇‘𝐶))) | ||
| Theorem | lnof 30691 | A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) | ||
| Theorem | lno0 30692 | The value of a linear operator at zero is zero. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑄 = (0vec‘𝑈) & ⊢ 𝑍 = (0vec‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) = 𝑍) | ||
| Theorem | lnocoi 30693 | The composition of two linear operators is linear. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝑀 = (𝑊 LnOp 𝑋) & ⊢ 𝑁 = (𝑈 LnOp 𝑋) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝑋 ∈ NrmCVec & ⊢ 𝑆 ∈ 𝐿 & ⊢ 𝑇 ∈ 𝑀 ⇒ ⊢ (𝑇 ∘ 𝑆) ∈ 𝑁 | ||
| Theorem | lnoadd 30694 | Addition property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐻 = ( +𝑣 ‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) | ||
| Theorem | lnosub 30695 | Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = ( −𝑣 ‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑀𝐵)) = ((𝑇‘𝐴)𝑁(𝑇‘𝐵))) | ||
| Theorem | lnomul 30696 | Scalar multiplication property of a linear operator. (Contributed by NM, 5-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑅𝐵)) = (𝐴𝑆(𝑇‘𝐵))) | ||
| Theorem | nvo00 30697 | Two ways to express a zero operator. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑇 = (𝑋 × {𝑍}) ↔ ran 𝑇 = {𝑍})) | ||
| Theorem | nmoofval 30698* | The operator norm function. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < ))) | ||
| Theorem | nmooval 30699* | The operator norm function. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑇‘𝑧)))}, ℝ*, < )) | ||
| Theorem | nmosetre 30700* | The set in the supremum of the operator norm definition df-nmoo 30681 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (normCV‘𝑊) ⇒ ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝑀‘𝑧) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑧)))} ⊆ ℝ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |