Home | Metamath
Proof Explorer Theorem List (p. 307 of 470) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29568) |
Hilbert Space Explorer
(29569-31091) |
Users' Mathboxes
(31092-46925) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | brafnmul 30601 | Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) ·fn (bra‘𝐵))) | ||
Theorem | kbfval 30602* | The outer product of two vectors, expressed as ∣ 𝐴〉〈𝐵 ∣ in Dirac notation. See df-kb 30501. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) | ||
Theorem | kbop 30603 | The outer product of two vectors, expressed as ∣ 𝐴〉〈𝐵 ∣ in Dirac notation, is an operator. (Contributed by NM, 30-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ) | ||
Theorem | kbval 30604 | The value of the operator resulting from the outer product ∣ 𝐴〉 〈𝐵 ∣ of two vectors. Equation 8.1 of [Prugovecki] p. 376. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) | ||
Theorem | kbmul 30605 | Multiplication property of outer product. (Contributed by NM, 31-May-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶))) | ||
Theorem | kbpj 30606 | If a vector 𝐴 has norm 1, the outer product ∣ 𝐴〉〈𝐴 ∣ is the projector onto the subspace spanned by 𝐴. http://en.wikipedia.org/wiki/Bra-ket#Linear%5Foperators. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) → (𝐴 ketbra 𝐴) = (projℎ‘(span‘{𝐴}))) | ||
Theorem | eleigvec 30607* | Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) | ||
Theorem | eleigvec2 30608 | Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 18-Mar-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ (𝑇‘𝐴) ∈ (span‘{𝐴})))) | ||
Theorem | eleigveccl 30609 | Closure of an eigenvector of a Hilbert space operator. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → 𝐴 ∈ ℋ) | ||
Theorem | eigvalval 30610 | The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) | ||
Theorem | eigvalcl 30611 | An eigenvalue is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℂ) | ||
Theorem | eigvec1 30612 | Property of an eigenvector. (Contributed by NM, 12-Mar-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((𝑇‘𝐴) = (((eigval‘𝑇)‘𝐴) ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ)) | ||
Theorem | eighmre 30613 | The eigenvalues of a Hermitian operator are real. Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℝ) | ||
Theorem | eighmorth 30614 | Eigenvectors of a Hermitian operator with distinct eigenvalues are orthogonal. Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.) |
⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (𝐴 ·ih 𝐵) = 0) | ||
Theorem | nmopnegi 30615 | Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi 30681, the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (normop‘(-1 ·op 𝑇)) = (normop‘𝑇) | ||
Theorem | lnop0 30616 | The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) | ||
Theorem | lnopmul 30617 | Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) | ||
Theorem | lnopli 30618 | Basic scalar product property of a linear Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) | ||
Theorem | lnopfi 30619 | A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ 𝑇: ℋ⟶ ℋ | ||
Theorem | lnop0i 30620 | The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇‘0ℎ) = 0ℎ | ||
Theorem | lnopaddi 30621 | Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) +ℎ (𝑇‘𝐵))) | ||
Theorem | lnopmuli 30622 | Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) | ||
Theorem | lnopaddmuli 30623 | Sum/product property of a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 +ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) +ℎ (𝐴 ·ℎ (𝑇‘𝐶)))) | ||
Theorem | lnopsubi 30624 | Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) −ℎ (𝑇‘𝐵))) | ||
Theorem | lnopsubmuli 30625 | Subtraction/product property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 −ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) −ℎ (𝐴 ·ℎ (𝑇‘𝐶)))) | ||
Theorem | lnopmulsubi 30626 | Product/subtraction property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) −ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) −ℎ (𝑇‘𝐶))) | ||
Theorem | homco2 30627 | Move a scalar product out of a composition of operators. The operator 𝑇 must be linear, unlike homco1 30451 that works for any operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇 ∘ 𝑈))) | ||
Theorem | idunop 30628 | The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.) |
⊢ ( I ↾ ℋ) ∈ UniOp | ||
Theorem | 0cnop 30629 | The identically zero function is a continuous Hilbert space operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ 0hop ∈ ContOp | ||
Theorem | 0cnfn 30630 | The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ ( ℋ × {0}) ∈ ContFn | ||
Theorem | idcnop 30631 | The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ ( I ↾ ℋ) ∈ ContOp | ||
Theorem | idhmop 30632 | The Hilbert space identity operator is a Hermitian operator. (Contributed by NM, 22-Apr-2006.) (New usage is discouraged.) |
⊢ Iop ∈ HrmOp | ||
Theorem | 0hmop 30633 | The identically zero function is a Hermitian operator. (Contributed by NM, 8-Aug-2006.) (New usage is discouraged.) |
⊢ 0hop ∈ HrmOp | ||
Theorem | 0lnop 30634 | The identically zero function is a linear Hilbert space operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ 0hop ∈ LinOp | ||
Theorem | 0lnfn 30635 | The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ ( ℋ × {0}) ∈ LinFn | ||
Theorem | nmop0 30636 | The norm of the zero operator is zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) |
⊢ (normop‘ 0hop ) = 0 | ||
Theorem | nmfn0 30637 | The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (normfn‘( ℋ × {0})) = 0 | ||
Theorem | hmopbdoptHIL 30638 | A Hermitian operator is a bounded linear operator (Hellinger-Toeplitz Theorem). (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) |
⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ BndLinOp) | ||
Theorem | hoddii 30639 | Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 30430 does not require linearity.) (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑅 ∈ LinOp & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)) | ||
Theorem | hoddi 30640 | Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 30430 does not require linearity.) (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑅 ∈ LinOp ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))) | ||
Theorem | nmop0h 30641 | The norm of any operator on the trivial Hilbert space is zero. (This is the reason we need ℋ ≠ 0ℋ in nmopun 30664.) (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.) |
⊢ (( ℋ = 0ℋ ∧ 𝑇: ℋ⟶ ℋ) → (normop‘𝑇) = 0) | ||
Theorem | idlnop 30642 | The identity function (restricted to Hilbert space) is a linear operator. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
⊢ ( I ↾ ℋ) ∈ LinOp | ||
Theorem | 0bdop 30643 | The identically zero operator is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ 0hop ∈ BndLinOp | ||
Theorem | adj0 30644 | Adjoint of the zero operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
⊢ (adjℎ‘ 0hop ) = 0hop | ||
Theorem | nmlnop0iALT 30645 | A linear operator with a zero norm is identically zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop ) | ||
Theorem | nmlnop0iHIL 30646 | A linear operator with a zero norm is identically zero. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop ) | ||
Theorem | nmlnopgt0i 30647 | A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇 ≠ 0hop ↔ 0 < (normop‘𝑇)) | ||
Theorem | nmlnop0 30648 | A linear operator with a zero norm is identically zero. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop )) | ||
Theorem | nmlnopne0 30649 | A linear operator with a nonzero norm is nonzero. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → ((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop )) | ||
Theorem | lnopmi 30650 | The scalar product of a linear operator is a linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp) | ||
Theorem | lnophsi 30651 | The sum of two linear operators is linear. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑆 +op 𝑇) ∈ LinOp | ||
Theorem | lnophdi 30652 | The difference of two linear operators is linear. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑆 −op 𝑇) ∈ LinOp | ||
Theorem | lnopcoi 30653 | The composition of two linear operators is linear. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑆 ∘ 𝑇) ∈ LinOp | ||
Theorem | lnopco0i 30654 | The composition of a linear operator with one whose norm is zero. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((normop‘𝑇) = 0 → (normop‘(𝑆 ∘ 𝑇)) = 0) | ||
Theorem | lnopeq0lem1 30655 | Lemma for lnopeq0i 30657. Apply the generalized polarization identity polid2i 29807 to the quadratic form ((𝑇‘𝑥), 𝑥). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝑇‘𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 +ℎ 𝐵)) ·ih (𝐴 +ℎ 𝐵)) − ((𝑇‘(𝐴 −ℎ 𝐵)) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝑇‘(𝐴 +ℎ (i ·ℎ 𝐵))) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝑇‘(𝐴 −ℎ (i ·ℎ 𝐵))) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4) | ||
Theorem | lnopeq0lem2 30656 | Lemma for lnopeq0i 30657. (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 +ℎ 𝐵)) ·ih (𝐴 +ℎ 𝐵)) − ((𝑇‘(𝐴 −ℎ 𝐵)) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝑇‘(𝐴 +ℎ (i ·ℎ 𝐵))) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝑇‘(𝐴 −ℎ (i ·ℎ 𝐵))) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4)) | ||
Theorem | lnopeq0i 30657* | A condition implying that a linear Hilbert space operator is identically zero. Unlike ho01i 30478 for arbitrary operators, when the operator is linear we need to consider only the values of the quadratic form (𝑇‘𝑥) ·ih 𝑥). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = 0 ↔ 𝑇 = 0hop ) | ||
Theorem | lnopeqi 30658* | Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑈 ∈ LinOp ⇒ ⊢ (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = ((𝑈‘𝑥) ·ih 𝑥) ↔ 𝑇 = 𝑈) | ||
Theorem | lnopeq 30659* | Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinOp ∧ 𝑈 ∈ LinOp) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = ((𝑈‘𝑥) ·ih 𝑥) ↔ 𝑇 = 𝑈)) | ||
Theorem | lnopunilem1 30660* | Lemma for lnopunii 30662. (Contributed by NM, 14-May-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝐶 · (𝐴 ·ih 𝐵))) | ||
Theorem | lnopunilem2 30661* | Lemma for lnopunii 30662. (Contributed by NM, 12-May-2005.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) | ||
Theorem | lnopunii 30662* | If a linear operator (whose range is ℋ) is idempotent in the norm, the operator is unitary. Similar to theorem in [AkhiezerGlazman] p. 73. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇: ℋ–onto→ ℋ & ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) ⇒ ⊢ 𝑇 ∈ UniOp | ||
Theorem | elunop2 30663* | An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in [AkhiezerGlazman] p. 73, and its converse. (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ UniOp ↔ (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥))) | ||
Theorem | nmopun 30664 | Norm of a unitary Hilbert space operator. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
⊢ (( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → (normop‘𝑇) = 1) | ||
Theorem | unopbd 30665 | A unitary operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ UniOp → 𝑇 ∈ BndLinOp) | ||
Theorem | lnophmlem1 30666* | Lemma for lnophmi 30668. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ⇒ ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ | ||
Theorem | lnophmlem2 30667* | Lemma for lnophmi 30668. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ⇒ ⊢ (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) | ||
Theorem | lnophmi 30668* | A linear operator is Hermitian if 𝑥 ·ih (𝑇‘𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ⇒ ⊢ 𝑇 ∈ HrmOp | ||
Theorem | lnophm 30669* | A linear operator is Hermitian if 𝑥 ·ih (𝑇‘𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ) → 𝑇 ∈ HrmOp) | ||
Theorem | hmops 30670 | The sum of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp) | ||
Theorem | hmopm 30671 | The scalar product of a Hermitian operator with a real is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp) | ||
Theorem | hmopd 30672 | The difference of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 −op 𝑈) ∈ HrmOp) | ||
Theorem | hmopco 30673 | The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇 ∘ 𝑈) = (𝑈 ∘ 𝑇)) → (𝑇 ∘ 𝑈) ∈ HrmOp) | ||
Theorem | nmbdoplbi 30674 | A lower bound for the norm of a bounded linear operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmbdoplb 30675 | A lower bound for the norm of a bounded linear Hilbert space operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ BndLinOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmcexi 30676* | Lemma for nmcopexi 30677 and nmcfnexi 30701. The norm of a continuous linear Hilbert space operator or functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by Mario Carneiro, 17-Nov-2013.) (Proof shortened by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (𝑁‘(𝑇‘𝑧)) < 1) & ⊢ (𝑆‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇‘𝑥)))}, ℝ*, < ) & ⊢ (𝑥 ∈ ℋ → (𝑁‘(𝑇‘𝑥)) ∈ ℝ) & ⊢ (𝑁‘(𝑇‘0ℎ)) = 0 & ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (𝑁‘(𝑇‘𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) ⇒ ⊢ (𝑆‘𝑇) ∈ ℝ | ||
Theorem | nmcopexi 30677 | The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ (normop‘𝑇) ∈ ℝ | ||
Theorem | nmcoplbi 30678 | A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmcopex 30679 | The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) → (normop‘𝑇) ∈ ℝ) | ||
Theorem | nmcoplb 30680 | A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmophmi 30681 | The norm of the scalar product of a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop‘𝑇))) | ||
Theorem | bdophmi 30682 | The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp) | ||
Theorem | lnconi 30683* | Lemma for lnopconi 30684 and lnfnconi 30705. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ 𝐶 → 𝑆 ∈ ℝ) & ⊢ ((𝑇 ∈ 𝐶 ∧ 𝑦 ∈ ℋ) → (𝑁‘(𝑇‘𝑦)) ≤ (𝑆 · (normℎ‘𝑦))) & ⊢ (𝑇 ∈ 𝐶 ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (𝑁‘((𝑇‘𝑤)𝑀(𝑇‘𝑥))) < 𝑧)) & ⊢ (𝑦 ∈ ℋ → (𝑁‘(𝑇‘𝑦)) ∈ ℝ) & ⊢ ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 −ℎ 𝑥)) = ((𝑇‘𝑤)𝑀(𝑇‘𝑥))) ⇒ ⊢ (𝑇 ∈ 𝐶 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
Theorem | lnopconi 30684* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
Theorem | lnopcon 30685* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) | ||
Theorem | lnopcnbd 30686 | A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp)) | ||
Theorem | lncnopbd 30687 | A continuous linear operator is a bounded linear operator. This theorem justifies our use of "bounded linear" as an interchangeable condition for "continuous linear" used in some textbook proofs. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ (LinOp ∩ ContOp) ↔ 𝑇 ∈ BndLinOp) | ||
Theorem | lncnbd 30688 | A continuous linear operator is a bounded linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ (LinOp ∩ ContOp) = BndLinOp | ||
Theorem | lnopcnre 30689 | A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ (normop‘𝑇) ∈ ℝ)) | ||
Theorem | lnfnli 30690 | Basic property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶))) | ||
Theorem | lnfnfi 30691 | A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ 𝑇: ℋ⟶ℂ | ||
Theorem | lnfn0i 30692 | The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ (𝑇‘0ℎ) = 0 | ||
Theorem | lnfnaddi 30693 | Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) | ||
Theorem | lnfnmuli 30694 | Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) | ||
Theorem | lnfnaddmuli 30695 | Sum/product property of a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 +ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) + (𝐴 · (𝑇‘𝐶)))) | ||
Theorem | lnfnsubi 30696 | Subtraction property for a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) − (𝑇‘𝐵))) | ||
Theorem | lnfn0 30697 | The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn → (𝑇‘0ℎ) = 0) | ||
Theorem | lnfnmul 30698 | Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) | ||
Theorem | nmbdfnlbi 30699 | A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) ⇒ ⊢ (𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmbdfnlb 30700 | A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |