HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hcau Structured version   Visualization version   GIF version

Theorem hcau 31165
Description: Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hcau (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧,𝐹

Proof of Theorem hcau
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6875 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
2 fveq1 6875 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
31, 2oveq12d 7423 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑦) − (𝑓𝑧)) = ((𝐹𝑦) − (𝐹𝑧)))
43fveq2d 6880 . . . . . 6 (𝑓 = 𝐹 → (norm‘((𝑓𝑦) − (𝑓𝑧))) = (norm‘((𝐹𝑦) − (𝐹𝑧))))
54breq1d 5129 . . . . 5 (𝑓 = 𝐹 → ((norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥 ↔ (norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
65rexralbidv 3207 . . . 4 (𝑓 = 𝐹 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
76ralbidv 3163 . . 3 (𝑓 = 𝐹 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
8 df-hcau 30954 . . 3 Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥}
97, 8elrab2 3674 . 2 (𝐹 ∈ Cauchy ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
10 ax-hilex 30980 . . . 4 ℋ ∈ V
11 nnex 12246 . . . 4 ℕ ∈ V
1210, 11elmap 8885 . . 3 (𝐹 ∈ ( ℋ ↑m ℕ) ↔ 𝐹:ℕ⟶ ℋ)
1312anbi1i 624 . 2 ((𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥) ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
149, 13bitri 275 1 (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840   < clt 11269  cn 12240  cuz 12852  +crp 13008  chba 30900  normcno 30904   cmv 30906  Cauchyccauold 30907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-1cn 11187  ax-addcl 11189  ax-hilex 30980
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-map 8842  df-nn 12241  df-hcau 30954
This theorem is referenced by:  hcauseq  31166  hcaucvg  31167  seq1hcau  31168  chscllem2  31619
  Copyright terms: Public domain W3C validator