![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hcau | Structured version Visualization version GIF version |
Description: Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hcau | ⊢ (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6881 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
2 | fveq1 6881 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑧) = (𝐹‘𝑧)) | |
3 | 1, 2 | oveq12d 7420 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑦) −ℎ (𝑓‘𝑧)) = ((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) |
4 | 3 | fveq2d 6886 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) = (normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧)))) |
5 | 4 | breq1d 5149 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 ↔ (normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
6 | 5 | rexralbidv 3212 | . . . 4 ⊢ (𝑓 = 𝐹 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
7 | 6 | ralbidv 3169 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
8 | df-hcau 30698 | . . 3 ⊢ Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} | |
9 | 7, 8 | elrab2 3679 | . 2 ⊢ (𝐹 ∈ Cauchy ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
10 | ax-hilex 30724 | . . . 4 ⊢ ℋ ∈ V | |
11 | nnex 12216 | . . . 4 ⊢ ℕ ∈ V | |
12 | 10, 11 | elmap 8862 | . . 3 ⊢ (𝐹 ∈ ( ℋ ↑m ℕ) ↔ 𝐹:ℕ⟶ ℋ) |
13 | 12 | anbi1i 623 | . 2 ⊢ ((𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥) ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
14 | 9, 13 | bitri 275 | 1 ⊢ (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 class class class wbr 5139 ⟶wf 6530 ‘cfv 6534 (class class class)co 7402 ↑m cmap 8817 < clt 11246 ℕcn 12210 ℤ≥cuz 12820 ℝ+crp 12972 ℋchba 30644 normℎcno 30648 −ℎ cmv 30650 Cauchyccauold 30651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-1cn 11165 ax-addcl 11167 ax-hilex 30724 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-map 8819 df-nn 12211 df-hcau 30698 |
This theorem is referenced by: hcauseq 30910 hcaucvg 30911 seq1hcau 30912 chscllem2 31363 |
Copyright terms: Public domain | W3C validator |