| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hcau | Structured version Visualization version GIF version | ||
| Description: Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hcau | ⊢ (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6905 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
| 2 | fveq1 6905 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑧) = (𝐹‘𝑧)) | |
| 3 | 1, 2 | oveq12d 7449 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑦) −ℎ (𝑓‘𝑧)) = ((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) |
| 4 | 3 | fveq2d 6910 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) = (normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧)))) |
| 5 | 4 | breq1d 5153 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 ↔ (normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
| 6 | 5 | rexralbidv 3223 | . . . 4 ⊢ (𝑓 = 𝐹 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
| 7 | 6 | ralbidv 3178 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
| 8 | df-hcau 30992 | . . 3 ⊢ Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} | |
| 9 | 7, 8 | elrab2 3695 | . 2 ⊢ (𝐹 ∈ Cauchy ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
| 10 | ax-hilex 31018 | . . . 4 ⊢ ℋ ∈ V | |
| 11 | nnex 12272 | . . . 4 ⊢ ℕ ∈ V | |
| 12 | 10, 11 | elmap 8911 | . . 3 ⊢ (𝐹 ∈ ( ℋ ↑m ℕ) ↔ 𝐹:ℕ⟶ ℋ) |
| 13 | 12 | anbi1i 624 | . 2 ⊢ ((𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥) ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
| 14 | 9, 13 | bitri 275 | 1 ⊢ (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 class class class wbr 5143 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 < clt 11295 ℕcn 12266 ℤ≥cuz 12878 ℝ+crp 13034 ℋchba 30938 normℎcno 30942 −ℎ cmv 30944 Cauchyccauold 30945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-1cn 11213 ax-addcl 11215 ax-hilex 31018 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-map 8868 df-nn 12267 df-hcau 30992 |
| This theorem is referenced by: hcauseq 31204 hcaucvg 31205 seq1hcau 31206 chscllem2 31657 |
| Copyright terms: Public domain | W3C validator |