HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hcau Structured version   Visualization version   GIF version

Theorem hcau 30861
Description: Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hcau (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧,𝐹

Proof of Theorem hcau
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6880 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
2 fveq1 6880 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
31, 2oveq12d 7419 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑦) − (𝑓𝑧)) = ((𝐹𝑦) − (𝐹𝑧)))
43fveq2d 6885 . . . . . 6 (𝑓 = 𝐹 → (norm‘((𝑓𝑦) − (𝑓𝑧))) = (norm‘((𝐹𝑦) − (𝐹𝑧))))
54breq1d 5148 . . . . 5 (𝑓 = 𝐹 → ((norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥 ↔ (norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
65rexralbidv 3212 . . . 4 (𝑓 = 𝐹 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
76ralbidv 3169 . . 3 (𝑓 = 𝐹 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
8 df-hcau 30650 . . 3 Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥}
97, 8elrab2 3678 . 2 (𝐹 ∈ Cauchy ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
10 ax-hilex 30676 . . . 4 ℋ ∈ V
11 nnex 12214 . . . 4 ℕ ∈ V
1210, 11elmap 8860 . . 3 (𝐹 ∈ ( ℋ ↑m ℕ) ↔ 𝐹:ℕ⟶ ℋ)
1312anbi1i 623 . 2 ((𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥) ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
149, 13bitri 275 1 (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3053  wrex 3062   class class class wbr 5138  wf 6529  cfv 6533  (class class class)co 7401  m cmap 8815   < clt 11244  cn 12208  cuz 12818  +crp 12970  chba 30596  normcno 30600   cmv 30602  Cauchyccauold 30603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-1cn 11163  ax-addcl 11165  ax-hilex 30676
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-map 8817  df-nn 12209  df-hcau 30650
This theorem is referenced by:  hcauseq  30862  hcaucvg  30863  seq1hcau  30864  chscllem2  31315
  Copyright terms: Public domain W3C validator