Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hcau Structured version   Visualization version   GIF version

Theorem hcau 28974
 Description: Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hcau (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧,𝐹

Proof of Theorem hcau
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6644 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
2 fveq1 6644 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
31, 2oveq12d 7153 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑦) − (𝑓𝑧)) = ((𝐹𝑦) − (𝐹𝑧)))
43fveq2d 6649 . . . . . 6 (𝑓 = 𝐹 → (norm‘((𝑓𝑦) − (𝑓𝑧))) = (norm‘((𝐹𝑦) − (𝐹𝑧))))
54breq1d 5040 . . . . 5 (𝑓 = 𝐹 → ((norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥 ↔ (norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
65rexralbidv 3260 . . . 4 (𝑓 = 𝐹 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
76ralbidv 3162 . . 3 (𝑓 = 𝐹 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
8 df-hcau 28763 . . 3 Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥}
97, 8elrab2 3631 . 2 (𝐹 ∈ Cauchy ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
10 ax-hilex 28789 . . . 4 ℋ ∈ V
11 nnex 11633 . . . 4 ℕ ∈ V
1210, 11elmap 8420 . . 3 (𝐹 ∈ ( ℋ ↑m ℕ) ↔ 𝐹:ℕ⟶ ℋ)
1312anbi1i 626 . 2 ((𝐹 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥) ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
149, 13bitri 278 1 (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107   class class class wbr 5030  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135   ↑m cmap 8391   < clt 10666  ℕcn 11627  ℤ≥cuz 12233  ℝ+crp 12379   ℋchba 28709  normℎcno 28713   −ℎ cmv 28715  Cauchyccauold 28716 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-1cn 10586  ax-addcl 10588  ax-hilex 28789 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-map 8393  df-nn 11628  df-hcau 28763 This theorem is referenced by:  hcauseq  28975  hcaucvg  28976  seq1hcau  28977  chscllem2  29428
 Copyright terms: Public domain W3C validator