| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > h2hcau | Structured version Visualization version GIF version | ||
| Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| h2hc.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| h2hc.2 | ⊢ 𝑈 ∈ NrmCVec |
| h2hc.3 | ⊢ ℋ = (BaseSet‘𝑈) |
| h2hc.4 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| h2hcau | ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3416 | . 2 ⊢ {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥} = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)} | |
| 2 | df-hcau 30954 | . 2 ⊢ Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥} | |
| 3 | elin 3942 | . . . 4 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ))) | |
| 4 | ancom 460 | . . . 4 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷))) | |
| 5 | h2hc.3 | . . . . . . . 8 ⊢ ℋ = (BaseSet‘𝑈) | |
| 6 | 5 | hlex 30879 | . . . . . . 7 ⊢ ℋ ∈ V |
| 7 | nnex 12246 | . . . . . . 7 ⊢ ℕ ∈ V | |
| 8 | 6, 7 | elmap 8885 | . . . . . 6 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ) |
| 9 | nnuz 12895 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 10 | h2hc.2 | . . . . . . . . 9 ⊢ 𝑈 ∈ NrmCVec | |
| 11 | h2hc.4 | . . . . . . . . . 10 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 12 | 5, 11 | imsxmet 30673 | . . . . . . . . 9 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ)) |
| 13 | 10, 12 | mp1i 13 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ)) |
| 14 | 1zzd 12623 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ) | |
| 15 | eqidd 2736 | . . . . . . . 8 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) = (𝑓‘𝑘)) | |
| 16 | eqidd 2736 | . . . . . . . 8 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓‘𝑗) = (𝑓‘𝑗)) | |
| 17 | id 22 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ) | |
| 18 | 9, 13, 14, 15, 16, 17 | iscauf 25232 | . . . . . . 7 ⊢ (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥)) |
| 19 | ffvelcdm 7071 | . . . . . . . . . . . . 13 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓‘𝑗) ∈ ℋ) | |
| 20 | 19 | adantr 480 | . . . . . . . . . . . 12 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑓‘𝑗) ∈ ℋ) |
| 21 | eluznn 12934 | . . . . . . . . . . . . . 14 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | |
| 22 | ffvelcdm 7071 | . . . . . . . . . . . . . 14 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ ℋ) | |
| 23 | 21, 22 | sylan2 593 | . . . . . . . . . . . . 13 ⊢ ((𝑓:ℕ⟶ ℋ ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝑓‘𝑘) ∈ ℋ) |
| 24 | 23 | anassrs 467 | . . . . . . . . . . . 12 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑓‘𝑘) ∈ ℋ) |
| 25 | h2hc.1 | . . . . . . . . . . . . 13 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 26 | 25, 10, 5, 11 | h2hmetdval 30959 | . . . . . . . . . . . 12 ⊢ (((𝑓‘𝑗) ∈ ℋ ∧ (𝑓‘𝑘) ∈ ℋ) → ((𝑓‘𝑗)𝐷(𝑓‘𝑘)) = (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘)))) |
| 27 | 20, 24, 26 | syl2anc 584 | . . . . . . . . . . 11 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑓‘𝑗)𝐷(𝑓‘𝑘)) = (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘)))) |
| 28 | 27 | breq1d 5129 | . . . . . . . . . 10 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
| 29 | 28 | ralbidva 3161 | . . . . . . . . 9 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
| 30 | 29 | rexbidva 3162 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
| 31 | 30 | ralbidv 3163 | . . . . . . 7 ⊢ (𝑓:ℕ⟶ ℋ → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
| 32 | 18, 31 | bitrd 279 | . . . . . 6 ⊢ (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
| 33 | 8, 32 | sylbi 217 | . . . . 5 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
| 34 | 33 | pm5.32i 574 | . . . 4 ⊢ ((𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
| 35 | 3, 4, 34 | 3bitri 297 | . . 3 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
| 36 | 35 | eqabi 2870 | . 2 ⊢ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)} |
| 37 | 1, 2, 36 | 3eqtr4i 2768 | 1 ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 ∃wrex 3060 {crab 3415 ∩ cin 3925 〈cop 4607 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 1c1 11130 < clt 11269 ℕcn 12240 ℤ≥cuz 12852 ℝ+crp 13008 ∞Metcxmet 21300 Cauccau 25205 NrmCVeccnv 30565 BaseSetcba 30567 IndMetcims 30572 ℋchba 30900 +ℎ cva 30901 ·ℎ csm 30902 normℎcno 30904 −ℎ cmv 30906 Cauchyccauold 30907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-xneg 13128 df-xadd 13129 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-cau 25208 df-grpo 30474 df-gid 30475 df-ginv 30476 df-gdiv 30477 df-ablo 30526 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-vs 30580 df-nmcv 30581 df-ims 30582 df-hvsub 30952 df-hcau 30954 |
| This theorem is referenced by: axhcompl-zf 30979 hhcau 31179 |
| Copyright terms: Public domain | W3C validator |