HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hcau Structured version   Visualization version   GIF version

Theorem h2hcau 30915
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2hc.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2hc.2 𝑈 ∈ NrmCVec
h2hc.3 ℋ = (BaseSet‘𝑈)
h2hc.4 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
h2hcau Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))

Proof of Theorem h2hcau
Dummy variables 𝑓 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3409 . 2 {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥} = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥)}
2 df-hcau 30909 . 2 Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥}
3 elin 3933 . . . 4 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)))
4 ancom 460 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)))
5 h2hc.3 . . . . . . . 8 ℋ = (BaseSet‘𝑈)
65hlex 30834 . . . . . . 7 ℋ ∈ V
7 nnex 12199 . . . . . . 7 ℕ ∈ V
86, 7elmap 8847 . . . . . 6 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
9 nnuz 12843 . . . . . . . 8 ℕ = (ℤ‘1)
10 h2hc.2 . . . . . . . . 9 𝑈 ∈ NrmCVec
11 h2hc.4 . . . . . . . . . 10 𝐷 = (IndMet‘𝑈)
125, 11imsxmet 30628 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ))
1310, 12mp1i 13 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ))
14 1zzd 12571 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ)
15 eqidd 2731 . . . . . . . 8 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
16 eqidd 2731 . . . . . . . 8 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓𝑗) = (𝑓𝑗))
17 id 22 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ)
189, 13, 14, 15, 16, 17iscauf 25187 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥))
19 ffvelcdm 7056 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓𝑗) ∈ ℋ)
2019adantr 480 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑓𝑗) ∈ ℋ)
21 eluznn 12884 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
22 ffvelcdm 7056 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
2321, 22sylan2 593 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ ℋ ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝑓𝑘) ∈ ℋ)
2423anassrs 467 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑓𝑘) ∈ ℋ)
25 h2hc.1 . . . . . . . . . . . . 13 𝑈 = ⟨⟨ + , · ⟩, norm
2625, 10, 5, 11h2hmetdval 30914 . . . . . . . . . . . 12 (((𝑓𝑗) ∈ ℋ ∧ (𝑓𝑘) ∈ ℋ) → ((𝑓𝑗)𝐷(𝑓𝑘)) = (norm‘((𝑓𝑗) − (𝑓𝑘))))
2720, 24, 26syl2anc 584 . . . . . . . . . . 11 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑓𝑗)𝐷(𝑓𝑘)) = (norm‘((𝑓𝑗) − (𝑓𝑘))))
2827breq1d 5120 . . . . . . . . . 10 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ (norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
2928ralbidva 3155 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3029rexbidva 3156 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3130ralbidv 3157 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3218, 31bitrd 279 . . . . . 6 (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
338, 32sylbi 217 . . . . 5 (𝑓 ∈ ( ℋ ↑m ℕ) → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3433pm5.32i 574 . . . 4 ((𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
353, 4, 343bitri 297 . . 3 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3635eqabi 2864 . 2 ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥)}
371, 2, 363eqtr4i 2763 1 Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  {crab 3408  cin 3916  cop 4598   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  1c1 11076   < clt 11215  cn 12193  cuz 12800  +crp 12958  ∞Metcxmet 21256  Cauccau 25160  NrmCVeccnv 30520  BaseSetcba 30522  IndMetcims 30527  chba 30855   + cva 30856   · csm 30857  normcno 30859   cmv 30861  Cauchyccauold 30862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-xneg 13079  df-xadd 13080  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-cau 25163  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-ims 30537  df-hvsub 30907  df-hcau 30909
This theorem is referenced by:  axhcompl-zf  30934  hhcau  31134
  Copyright terms: Public domain W3C validator