![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h2hcau | Structured version Visualization version GIF version |
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2hc.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
h2hc.2 | ⊢ 𝑈 ∈ NrmCVec |
h2hc.3 | ⊢ ℋ = (BaseSet‘𝑈) |
h2hc.4 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
h2hcau | ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3098 | . 2 ⊢ {𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥} = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)} | |
2 | df-hcau 28355 | . 2 ⊢ Cauchy = {𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥} | |
3 | elin 3994 | . . . 4 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑𝑚 ℕ))) | |
4 | ancom 453 | . . . 4 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑𝑚 ℕ)) ↔ (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∧ 𝑓 ∈ (Cau‘𝐷))) | |
5 | h2hc.3 | . . . . . . . 8 ⊢ ℋ = (BaseSet‘𝑈) | |
6 | 5 | hlex 28279 | . . . . . . 7 ⊢ ℋ ∈ V |
7 | nnex 11319 | . . . . . . 7 ⊢ ℕ ∈ V | |
8 | 6, 7 | elmap 8124 | . . . . . 6 ⊢ (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶ ℋ) |
9 | nnuz 11967 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
10 | h2hc.2 | . . . . . . . . 9 ⊢ 𝑈 ∈ NrmCVec | |
11 | h2hc.4 | . . . . . . . . . 10 ⊢ 𝐷 = (IndMet‘𝑈) | |
12 | 5, 11 | imsxmet 28072 | . . . . . . . . 9 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ)) |
13 | 10, 12 | mp1i 13 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ)) |
14 | 1zzd 11698 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ) | |
15 | eqidd 2800 | . . . . . . . 8 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) = (𝑓‘𝑘)) | |
16 | eqidd 2800 | . . . . . . . 8 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓‘𝑗) = (𝑓‘𝑗)) | |
17 | id 22 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ) | |
18 | 9, 13, 14, 15, 16, 17 | iscauf 23406 | . . . . . . 7 ⊢ (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥)) |
19 | ffvelrn 6583 | . . . . . . . . . . . . 13 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓‘𝑗) ∈ ℋ) | |
20 | 19 | adantr 473 | . . . . . . . . . . . 12 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑓‘𝑗) ∈ ℋ) |
21 | eluznn 12003 | . . . . . . . . . . . . . 14 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | |
22 | ffvelrn 6583 | . . . . . . . . . . . . . 14 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ ℋ) | |
23 | 21, 22 | sylan2 587 | . . . . . . . . . . . . 13 ⊢ ((𝑓:ℕ⟶ ℋ ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝑓‘𝑘) ∈ ℋ) |
24 | 23 | anassrs 460 | . . . . . . . . . . . 12 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑓‘𝑘) ∈ ℋ) |
25 | h2hc.1 | . . . . . . . . . . . . 13 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
26 | 25, 10, 5, 11 | h2hmetdval 28360 | . . . . . . . . . . . 12 ⊢ (((𝑓‘𝑗) ∈ ℋ ∧ (𝑓‘𝑘) ∈ ℋ) → ((𝑓‘𝑗)𝐷(𝑓‘𝑘)) = (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘)))) |
27 | 20, 24, 26 | syl2anc 580 | . . . . . . . . . . 11 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑓‘𝑗)𝐷(𝑓‘𝑘)) = (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘)))) |
28 | 27 | breq1d 4853 | . . . . . . . . . 10 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
29 | 28 | ralbidva 3166 | . . . . . . . . 9 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
30 | 29 | rexbidva 3230 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
31 | 30 | ralbidv 3167 | . . . . . . 7 ⊢ (𝑓:ℕ⟶ ℋ → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
32 | 18, 31 | bitrd 271 | . . . . . 6 ⊢ (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
33 | 8, 32 | sylbi 209 | . . . . 5 ⊢ (𝑓 ∈ ( ℋ ↑𝑚 ℕ) → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
34 | 33 | pm5.32i 571 | . . . 4 ⊢ ((𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)) ↔ (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
35 | 3, 4, 34 | 3bitri 289 | . . 3 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) ↔ (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
36 | 35 | abbi2i 2915 | . 2 ⊢ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)} |
37 | 1, 2, 36 | 3eqtr4i 2831 | 1 ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {cab 2785 ∀wral 3089 ∃wrex 3090 {crab 3093 ∩ cin 3768 〈cop 4374 class class class wbr 4843 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ↑𝑚 cmap 8095 1c1 10225 < clt 10363 ℕcn 11312 ℤ≥cuz 11930 ℝ+crp 12074 ∞Metcxmet 20053 Cauccau 23379 NrmCVeccnv 27964 BaseSetcba 27966 IndMetcims 27971 ℋchba 28301 +ℎ cva 28302 ·ℎ csm 28303 normℎcno 28305 −ℎ cmv 28307 Cauchyccauold 28308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-map 8097 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-sup 8590 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-rp 12075 df-xneg 12193 df-xadd 12194 df-seq 13056 df-exp 13115 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-cau 23382 df-grpo 27873 df-gid 27874 df-ginv 27875 df-gdiv 27876 df-ablo 27925 df-vc 27939 df-nv 27972 df-va 27975 df-ba 27976 df-sm 27977 df-0v 27978 df-vs 27979 df-nmcv 27980 df-ims 27981 df-hvsub 28353 df-hcau 28355 |
This theorem is referenced by: axhcompl-zf 28380 hhcau 28580 |
Copyright terms: Public domain | W3C validator |