HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hcau Structured version   Visualization version   GIF version

Theorem h2hcau 30998
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2hc.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2hc.2 𝑈 ∈ NrmCVec
h2hc.3 ℋ = (BaseSet‘𝑈)
h2hc.4 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
h2hcau Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))

Proof of Theorem h2hcau
Dummy variables 𝑓 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3437 . 2 {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥} = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥)}
2 df-hcau 30992 . 2 Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥}
3 elin 3967 . . . 4 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)))
4 ancom 460 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)))
5 h2hc.3 . . . . . . . 8 ℋ = (BaseSet‘𝑈)
65hlex 30917 . . . . . . 7 ℋ ∈ V
7 nnex 12272 . . . . . . 7 ℕ ∈ V
86, 7elmap 8911 . . . . . 6 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
9 nnuz 12921 . . . . . . . 8 ℕ = (ℤ‘1)
10 h2hc.2 . . . . . . . . 9 𝑈 ∈ NrmCVec
11 h2hc.4 . . . . . . . . . 10 𝐷 = (IndMet‘𝑈)
125, 11imsxmet 30711 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ))
1310, 12mp1i 13 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ))
14 1zzd 12648 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ)
15 eqidd 2738 . . . . . . . 8 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
16 eqidd 2738 . . . . . . . 8 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓𝑗) = (𝑓𝑗))
17 id 22 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ)
189, 13, 14, 15, 16, 17iscauf 25314 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥))
19 ffvelcdm 7101 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓𝑗) ∈ ℋ)
2019adantr 480 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑓𝑗) ∈ ℋ)
21 eluznn 12960 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
22 ffvelcdm 7101 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
2321, 22sylan2 593 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ ℋ ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝑓𝑘) ∈ ℋ)
2423anassrs 467 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑓𝑘) ∈ ℋ)
25 h2hc.1 . . . . . . . . . . . . 13 𝑈 = ⟨⟨ + , · ⟩, norm
2625, 10, 5, 11h2hmetdval 30997 . . . . . . . . . . . 12 (((𝑓𝑗) ∈ ℋ ∧ (𝑓𝑘) ∈ ℋ) → ((𝑓𝑗)𝐷(𝑓𝑘)) = (norm‘((𝑓𝑗) − (𝑓𝑘))))
2720, 24, 26syl2anc 584 . . . . . . . . . . 11 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑓𝑗)𝐷(𝑓𝑘)) = (norm‘((𝑓𝑗) − (𝑓𝑘))))
2827breq1d 5153 . . . . . . . . . 10 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ (norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
2928ralbidva 3176 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3029rexbidva 3177 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3130ralbidv 3178 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3218, 31bitrd 279 . . . . . 6 (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
338, 32sylbi 217 . . . . 5 (𝑓 ∈ ( ℋ ↑m ℕ) → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3433pm5.32i 574 . . . 4 ((𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
353, 4, 343bitri 297 . . 3 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3635eqabi 2877 . 2 ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥)}
371, 2, 363eqtr4i 2775 1 Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2714  wral 3061  wrex 3070  {crab 3436  cin 3950  cop 4632   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  1c1 11156   < clt 11295  cn 12266  cuz 12878  +crp 13034  ∞Metcxmet 21349  Cauccau 25287  NrmCVeccnv 30603  BaseSetcba 30605  IndMetcims 30610  chba 30938   + cva 30939   · csm 30940  normcno 30942   cmv 30944  Cauchyccauold 30945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-xneg 13154  df-xadd 13155  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-cau 25290  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-hvsub 30990  df-hcau 30992
This theorem is referenced by:  axhcompl-zf  31017  hhcau  31217
  Copyright terms: Public domain W3C validator