Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > h2hcau | Structured version Visualization version GIF version |
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2hc.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
h2hc.2 | ⊢ 𝑈 ∈ NrmCVec |
h2hc.3 | ⊢ ℋ = (BaseSet‘𝑈) |
h2hc.4 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
h2hcau | ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3073 | . 2 ⊢ {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥} = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)} | |
2 | df-hcau 29335 | . 2 ⊢ Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥} | |
3 | elin 3903 | . . . 4 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ))) | |
4 | ancom 461 | . . . 4 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷))) | |
5 | h2hc.3 | . . . . . . . 8 ⊢ ℋ = (BaseSet‘𝑈) | |
6 | 5 | hlex 29260 | . . . . . . 7 ⊢ ℋ ∈ V |
7 | nnex 11979 | . . . . . . 7 ⊢ ℕ ∈ V | |
8 | 6, 7 | elmap 8659 | . . . . . 6 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ) |
9 | nnuz 12621 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
10 | h2hc.2 | . . . . . . . . 9 ⊢ 𝑈 ∈ NrmCVec | |
11 | h2hc.4 | . . . . . . . . . 10 ⊢ 𝐷 = (IndMet‘𝑈) | |
12 | 5, 11 | imsxmet 29054 | . . . . . . . . 9 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ)) |
13 | 10, 12 | mp1i 13 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ)) |
14 | 1zzd 12351 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ) | |
15 | eqidd 2739 | . . . . . . . 8 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) = (𝑓‘𝑘)) | |
16 | eqidd 2739 | . . . . . . . 8 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓‘𝑗) = (𝑓‘𝑗)) | |
17 | id 22 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ) | |
18 | 9, 13, 14, 15, 16, 17 | iscauf 24444 | . . . . . . 7 ⊢ (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥)) |
19 | ffvelrn 6959 | . . . . . . . . . . . . 13 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓‘𝑗) ∈ ℋ) | |
20 | 19 | adantr 481 | . . . . . . . . . . . 12 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑓‘𝑗) ∈ ℋ) |
21 | eluznn 12658 | . . . . . . . . . . . . . 14 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | |
22 | ffvelrn 6959 | . . . . . . . . . . . . . 14 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ ℋ) | |
23 | 21, 22 | sylan2 593 | . . . . . . . . . . . . 13 ⊢ ((𝑓:ℕ⟶ ℋ ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝑓‘𝑘) ∈ ℋ) |
24 | 23 | anassrs 468 | . . . . . . . . . . . 12 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑓‘𝑘) ∈ ℋ) |
25 | h2hc.1 | . . . . . . . . . . . . 13 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
26 | 25, 10, 5, 11 | h2hmetdval 29340 | . . . . . . . . . . . 12 ⊢ (((𝑓‘𝑗) ∈ ℋ ∧ (𝑓‘𝑘) ∈ ℋ) → ((𝑓‘𝑗)𝐷(𝑓‘𝑘)) = (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘)))) |
27 | 20, 24, 26 | syl2anc 584 | . . . . . . . . . . 11 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑓‘𝑗)𝐷(𝑓‘𝑘)) = (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘)))) |
28 | 27 | breq1d 5084 | . . . . . . . . . 10 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
29 | 28 | ralbidva 3111 | . . . . . . . . 9 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
30 | 29 | rexbidva 3225 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
31 | 30 | ralbidv 3112 | . . . . . . 7 ⊢ (𝑓:ℕ⟶ ℋ → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
32 | 18, 31 | bitrd 278 | . . . . . 6 ⊢ (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
33 | 8, 32 | sylbi 216 | . . . . 5 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
34 | 33 | pm5.32i 575 | . . . 4 ⊢ ((𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
35 | 3, 4, 34 | 3bitri 297 | . . 3 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
36 | 35 | abbi2i 2879 | . 2 ⊢ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)} |
37 | 1, 2, 36 | 3eqtr4i 2776 | 1 ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 {crab 3068 ∩ cin 3886 〈cop 4567 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 1c1 10872 < clt 11009 ℕcn 11973 ℤ≥cuz 12582 ℝ+crp 12730 ∞Metcxmet 20582 Cauccau 24417 NrmCVeccnv 28946 BaseSetcba 28948 IndMetcims 28953 ℋchba 29281 +ℎ cva 29282 ·ℎ csm 29283 normℎcno 29285 −ℎ cmv 29287 Cauchyccauold 29288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-xneg 12848 df-xadd 12849 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-cau 24420 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-ims 28963 df-hvsub 29333 df-hcau 29335 |
This theorem is referenced by: axhcompl-zf 29360 hhcau 29560 |
Copyright terms: Public domain | W3C validator |