HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hcau Structured version   Visualization version   GIF version

Theorem h2hcau 31008
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2hc.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2hc.2 𝑈 ∈ NrmCVec
h2hc.3 ℋ = (BaseSet‘𝑈)
h2hc.4 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
h2hcau Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))

Proof of Theorem h2hcau
Dummy variables 𝑓 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3434 . 2 {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥} = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥)}
2 df-hcau 31002 . 2 Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥}
3 elin 3979 . . . 4 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)))
4 ancom 460 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)))
5 h2hc.3 . . . . . . . 8 ℋ = (BaseSet‘𝑈)
65hlex 30927 . . . . . . 7 ℋ ∈ V
7 nnex 12270 . . . . . . 7 ℕ ∈ V
86, 7elmap 8910 . . . . . 6 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
9 nnuz 12919 . . . . . . . 8 ℕ = (ℤ‘1)
10 h2hc.2 . . . . . . . . 9 𝑈 ∈ NrmCVec
11 h2hc.4 . . . . . . . . . 10 𝐷 = (IndMet‘𝑈)
125, 11imsxmet 30721 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ))
1310, 12mp1i 13 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ))
14 1zzd 12646 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ)
15 eqidd 2736 . . . . . . . 8 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
16 eqidd 2736 . . . . . . . 8 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓𝑗) = (𝑓𝑗))
17 id 22 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ)
189, 13, 14, 15, 16, 17iscauf 25328 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥))
19 ffvelcdm 7101 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓𝑗) ∈ ℋ)
2019adantr 480 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑓𝑗) ∈ ℋ)
21 eluznn 12958 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
22 ffvelcdm 7101 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
2321, 22sylan2 593 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ ℋ ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝑓𝑘) ∈ ℋ)
2423anassrs 467 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑓𝑘) ∈ ℋ)
25 h2hc.1 . . . . . . . . . . . . 13 𝑈 = ⟨⟨ + , · ⟩, norm
2625, 10, 5, 11h2hmetdval 31007 . . . . . . . . . . . 12 (((𝑓𝑗) ∈ ℋ ∧ (𝑓𝑘) ∈ ℋ) → ((𝑓𝑗)𝐷(𝑓𝑘)) = (norm‘((𝑓𝑗) − (𝑓𝑘))))
2720, 24, 26syl2anc 584 . . . . . . . . . . 11 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑓𝑗)𝐷(𝑓𝑘)) = (norm‘((𝑓𝑗) − (𝑓𝑘))))
2827breq1d 5158 . . . . . . . . . 10 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ (norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
2928ralbidva 3174 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3029rexbidva 3175 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3130ralbidv 3176 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3218, 31bitrd 279 . . . . . 6 (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
338, 32sylbi 217 . . . . 5 (𝑓 ∈ ( ℋ ↑m ℕ) → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3433pm5.32i 574 . . . 4 ((𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
353, 4, 343bitri 297 . . 3 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3635eqabi 2875 . 2 ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥)}
371, 2, 363eqtr4i 2773 1 Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712  wral 3059  wrex 3068  {crab 3433  cin 3962  cop 4637   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  1c1 11154   < clt 11293  cn 12264  cuz 12876  +crp 13032  ∞Metcxmet 21367  Cauccau 25301  NrmCVeccnv 30613  BaseSetcba 30615  IndMetcims 30620  chba 30948   + cva 30949   · csm 30950  normcno 30952   cmv 30954  Cauchyccauold 30955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-xneg 13152  df-xadd 13153  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-cau 25304  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-vs 30628  df-nmcv 30629  df-ims 30630  df-hvsub 31000  df-hcau 31002
This theorem is referenced by:  axhcompl-zf  31027  hhcau  31227
  Copyright terms: Public domain W3C validator