Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > h2hcau | Structured version Visualization version GIF version |
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2hc.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
h2hc.2 | ⊢ 𝑈 ∈ NrmCVec |
h2hc.3 | ⊢ ℋ = (BaseSet‘𝑈) |
h2hc.4 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
h2hcau | ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3070 | . 2 ⊢ {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥} = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)} | |
2 | df-hcau 29059 | . 2 ⊢ Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥} | |
3 | elin 3887 | . . . 4 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ))) | |
4 | ancom 464 | . . . 4 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷))) | |
5 | h2hc.3 | . . . . . . . 8 ⊢ ℋ = (BaseSet‘𝑈) | |
6 | 5 | hlex 28984 | . . . . . . 7 ⊢ ℋ ∈ V |
7 | nnex 11841 | . . . . . . 7 ⊢ ℕ ∈ V | |
8 | 6, 7 | elmap 8557 | . . . . . 6 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ) |
9 | nnuz 12482 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
10 | h2hc.2 | . . . . . . . . 9 ⊢ 𝑈 ∈ NrmCVec | |
11 | h2hc.4 | . . . . . . . . . 10 ⊢ 𝐷 = (IndMet‘𝑈) | |
12 | 5, 11 | imsxmet 28778 | . . . . . . . . 9 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ)) |
13 | 10, 12 | mp1i 13 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ)) |
14 | 1zzd 12213 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ) | |
15 | eqidd 2738 | . . . . . . . 8 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) = (𝑓‘𝑘)) | |
16 | eqidd 2738 | . . . . . . . 8 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓‘𝑗) = (𝑓‘𝑗)) | |
17 | id 22 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ) | |
18 | 9, 13, 14, 15, 16, 17 | iscauf 24182 | . . . . . . 7 ⊢ (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥)) |
19 | ffvelrn 6907 | . . . . . . . . . . . . 13 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓‘𝑗) ∈ ℋ) | |
20 | 19 | adantr 484 | . . . . . . . . . . . 12 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑓‘𝑗) ∈ ℋ) |
21 | eluznn 12519 | . . . . . . . . . . . . . 14 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | |
22 | ffvelrn 6907 | . . . . . . . . . . . . . 14 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ ℋ) | |
23 | 21, 22 | sylan2 596 | . . . . . . . . . . . . 13 ⊢ ((𝑓:ℕ⟶ ℋ ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝑓‘𝑘) ∈ ℋ) |
24 | 23 | anassrs 471 | . . . . . . . . . . . 12 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑓‘𝑘) ∈ ℋ) |
25 | h2hc.1 | . . . . . . . . . . . . 13 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
26 | 25, 10, 5, 11 | h2hmetdval 29064 | . . . . . . . . . . . 12 ⊢ (((𝑓‘𝑗) ∈ ℋ ∧ (𝑓‘𝑘) ∈ ℋ) → ((𝑓‘𝑗)𝐷(𝑓‘𝑘)) = (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘)))) |
27 | 20, 24, 26 | syl2anc 587 | . . . . . . . . . . 11 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑓‘𝑗)𝐷(𝑓‘𝑘)) = (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘)))) |
28 | 27 | breq1d 5068 | . . . . . . . . . 10 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
29 | 28 | ralbidva 3117 | . . . . . . . . 9 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
30 | 29 | rexbidva 3220 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
31 | 30 | ralbidv 3118 | . . . . . . 7 ⊢ (𝑓:ℕ⟶ ℋ → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
32 | 18, 31 | bitrd 282 | . . . . . 6 ⊢ (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
33 | 8, 32 | sylbi 220 | . . . . 5 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
34 | 33 | pm5.32i 578 | . . . 4 ⊢ ((𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
35 | 3, 4, 34 | 3bitri 300 | . . 3 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
36 | 35 | abbi2i 2876 | . 2 ⊢ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)} |
37 | 1, 2, 36 | 3eqtr4i 2775 | 1 ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {cab 2714 ∀wral 3061 ∃wrex 3062 {crab 3065 ∩ cin 3870 〈cop 4552 class class class wbr 5058 ⟶wf 6381 ‘cfv 6385 (class class class)co 7218 ↑m cmap 8513 1c1 10735 < clt 10872 ℕcn 11835 ℤ≥cuz 12443 ℝ+crp 12591 ∞Metcxmet 20353 Cauccau 24155 NrmCVeccnv 28670 BaseSetcba 28672 IndMetcims 28677 ℋchba 29005 +ℎ cva 29006 ·ℎ csm 29007 normℎcno 29009 −ℎ cmv 29011 Cauchyccauold 29012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 ax-pre-sup 10812 ax-addf 10813 ax-mulf 10814 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-1st 7766 df-2nd 7767 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-er 8396 df-map 8515 df-pm 8516 df-en 8632 df-dom 8633 df-sdom 8634 df-sup 9063 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-div 11495 df-nn 11836 df-2 11898 df-3 11899 df-n0 12096 df-z 12182 df-uz 12444 df-rp 12592 df-xneg 12709 df-xadd 12710 df-seq 13580 df-exp 13641 df-cj 14667 df-re 14668 df-im 14669 df-sqrt 14803 df-abs 14804 df-psmet 20360 df-xmet 20361 df-met 20362 df-bl 20363 df-cau 24158 df-grpo 28579 df-gid 28580 df-ginv 28581 df-gdiv 28582 df-ablo 28631 df-vc 28645 df-nv 28678 df-va 28681 df-ba 28682 df-sm 28683 df-0v 28684 df-vs 28685 df-nmcv 28686 df-ims 28687 df-hvsub 29057 df-hcau 29059 |
This theorem is referenced by: axhcompl-zf 29084 hhcau 29284 |
Copyright terms: Public domain | W3C validator |