HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hcau Structured version   Visualization version   GIF version

Theorem h2hcau 29242
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2hc.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2hc.2 𝑈 ∈ NrmCVec
h2hc.3 ℋ = (BaseSet‘𝑈)
h2hc.4 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
h2hcau Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))

Proof of Theorem h2hcau
Dummy variables 𝑓 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3072 . 2 {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥} = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥)}
2 df-hcau 29236 . 2 Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥}
3 elin 3899 . . . 4 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)))
4 ancom 460 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)))
5 h2hc.3 . . . . . . . 8 ℋ = (BaseSet‘𝑈)
65hlex 29161 . . . . . . 7 ℋ ∈ V
7 nnex 11909 . . . . . . 7 ℕ ∈ V
86, 7elmap 8617 . . . . . 6 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
9 nnuz 12550 . . . . . . . 8 ℕ = (ℤ‘1)
10 h2hc.2 . . . . . . . . 9 𝑈 ∈ NrmCVec
11 h2hc.4 . . . . . . . . . 10 𝐷 = (IndMet‘𝑈)
125, 11imsxmet 28955 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ))
1310, 12mp1i 13 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ))
14 1zzd 12281 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ)
15 eqidd 2739 . . . . . . . 8 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
16 eqidd 2739 . . . . . . . 8 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓𝑗) = (𝑓𝑗))
17 id 22 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ)
189, 13, 14, 15, 16, 17iscauf 24349 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥))
19 ffvelrn 6941 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓𝑗) ∈ ℋ)
2019adantr 480 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑓𝑗) ∈ ℋ)
21 eluznn 12587 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
22 ffvelrn 6941 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
2321, 22sylan2 592 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ ℋ ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝑓𝑘) ∈ ℋ)
2423anassrs 467 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑓𝑘) ∈ ℋ)
25 h2hc.1 . . . . . . . . . . . . 13 𝑈 = ⟨⟨ + , · ⟩, norm
2625, 10, 5, 11h2hmetdval 29241 . . . . . . . . . . . 12 (((𝑓𝑗) ∈ ℋ ∧ (𝑓𝑘) ∈ ℋ) → ((𝑓𝑗)𝐷(𝑓𝑘)) = (norm‘((𝑓𝑗) − (𝑓𝑘))))
2720, 24, 26syl2anc 583 . . . . . . . . . . 11 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑓𝑗)𝐷(𝑓𝑘)) = (norm‘((𝑓𝑗) − (𝑓𝑘))))
2827breq1d 5080 . . . . . . . . . 10 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ (norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
2928ralbidva 3119 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3029rexbidva 3224 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3130ralbidv 3120 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3218, 31bitrd 278 . . . . . 6 (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
338, 32sylbi 216 . . . . 5 (𝑓 ∈ ( ℋ ↑m ℕ) → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3433pm5.32i 574 . . . 4 ((𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
353, 4, 343bitri 296 . . 3 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3635abbi2i 2878 . 2 ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥)}
371, 2, 363eqtr4i 2776 1 Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  {crab 3067  cin 3882  cop 4564   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  1c1 10803   < clt 10940  cn 11903  cuz 12511  +crp 12659  ∞Metcxmet 20495  Cauccau 24322  NrmCVeccnv 28847  BaseSetcba 28849  IndMetcims 28854  chba 29182   + cva 29183   · csm 29184  normcno 29186   cmv 29188  Cauchyccauold 29189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-cau 24325  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-hvsub 29234  df-hcau 29236
This theorem is referenced by:  axhcompl-zf  29261  hhcau  29461
  Copyright terms: Public domain W3C validator