![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h2hcau | Structured version Visualization version GIF version |
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2hc.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
h2hc.2 | ⊢ 𝑈 ∈ NrmCVec |
h2hc.3 | ⊢ ℋ = (BaseSet‘𝑈) |
h2hc.4 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
h2hcau | ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3432 | . 2 ⊢ {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥} = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)} | |
2 | df-hcau 30659 | . 2 ⊢ Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥} | |
3 | elin 3964 | . . . 4 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ))) | |
4 | ancom 460 | . . . 4 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷))) | |
5 | h2hc.3 | . . . . . . . 8 ⊢ ℋ = (BaseSet‘𝑈) | |
6 | 5 | hlex 30584 | . . . . . . 7 ⊢ ℋ ∈ V |
7 | nnex 12225 | . . . . . . 7 ⊢ ℕ ∈ V | |
8 | 6, 7 | elmap 8871 | . . . . . 6 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ) |
9 | nnuz 12872 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
10 | h2hc.2 | . . . . . . . . 9 ⊢ 𝑈 ∈ NrmCVec | |
11 | h2hc.4 | . . . . . . . . . 10 ⊢ 𝐷 = (IndMet‘𝑈) | |
12 | 5, 11 | imsxmet 30378 | . . . . . . . . 9 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ)) |
13 | 10, 12 | mp1i 13 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ)) |
14 | 1zzd 12600 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ) | |
15 | eqidd 2732 | . . . . . . . 8 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) = (𝑓‘𝑘)) | |
16 | eqidd 2732 | . . . . . . . 8 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓‘𝑗) = (𝑓‘𝑗)) | |
17 | id 22 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ) | |
18 | 9, 13, 14, 15, 16, 17 | iscauf 25128 | . . . . . . 7 ⊢ (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥)) |
19 | ffvelcdm 7083 | . . . . . . . . . . . . 13 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓‘𝑗) ∈ ℋ) | |
20 | 19 | adantr 480 | . . . . . . . . . . . 12 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑓‘𝑗) ∈ ℋ) |
21 | eluznn 12909 | . . . . . . . . . . . . . 14 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | |
22 | ffvelcdm 7083 | . . . . . . . . . . . . . 14 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ ℋ) | |
23 | 21, 22 | sylan2 592 | . . . . . . . . . . . . 13 ⊢ ((𝑓:ℕ⟶ ℋ ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝑓‘𝑘) ∈ ℋ) |
24 | 23 | anassrs 467 | . . . . . . . . . . . 12 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑓‘𝑘) ∈ ℋ) |
25 | h2hc.1 | . . . . . . . . . . . . 13 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
26 | 25, 10, 5, 11 | h2hmetdval 30664 | . . . . . . . . . . . 12 ⊢ (((𝑓‘𝑗) ∈ ℋ ∧ (𝑓‘𝑘) ∈ ℋ) → ((𝑓‘𝑗)𝐷(𝑓‘𝑘)) = (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘)))) |
27 | 20, 24, 26 | syl2anc 583 | . . . . . . . . . . 11 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑓‘𝑗)𝐷(𝑓‘𝑘)) = (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘)))) |
28 | 27 | breq1d 5158 | . . . . . . . . . 10 ⊢ (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ (normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
29 | 28 | ralbidva 3174 | . . . . . . . . 9 ⊢ ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
30 | 29 | rexbidva 3175 | . . . . . . . 8 ⊢ (𝑓:ℕ⟶ ℋ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
31 | 30 | ralbidv 3176 | . . . . . . 7 ⊢ (𝑓:ℕ⟶ ℋ → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑗)𝐷(𝑓‘𝑘)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
32 | 18, 31 | bitrd 279 | . . . . . 6 ⊢ (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
33 | 8, 32 | sylbi 216 | . . . . 5 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
34 | 33 | pm5.32i 574 | . . . 4 ⊢ ((𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
35 | 3, 4, 34 | 3bitri 297 | . . 3 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)) |
36 | 35 | eqabi 2868 | . 2 ⊢ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑗) −ℎ (𝑓‘𝑘))) < 𝑥)} |
37 | 1, 2, 36 | 3eqtr4i 2769 | 1 ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {cab 2708 ∀wral 3060 ∃wrex 3069 {crab 3431 ∩ cin 3947 〈cop 4634 class class class wbr 5148 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ↑m cmap 8826 1c1 11117 < clt 11255 ℕcn 12219 ℤ≥cuz 12829 ℝ+crp 12981 ∞Metcxmet 21218 Cauccau 25101 NrmCVeccnv 30270 BaseSetcba 30272 IndMetcims 30277 ℋchba 30605 +ℎ cva 30606 ·ℎ csm 30607 normℎcno 30609 −ℎ cmv 30611 Cauchyccauold 30612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-map 8828 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-xneg 13099 df-xadd 13100 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-psmet 21225 df-xmet 21226 df-met 21227 df-bl 21228 df-cau 25104 df-grpo 30179 df-gid 30180 df-ginv 30181 df-gdiv 30182 df-ablo 30231 df-vc 30245 df-nv 30278 df-va 30281 df-ba 30282 df-sm 30283 df-0v 30284 df-vs 30285 df-nmcv 30286 df-ims 30287 df-hvsub 30657 df-hcau 30659 |
This theorem is referenced by: axhcompl-zf 30684 hhcau 30884 |
Copyright terms: Public domain | W3C validator |