Detailed syntax breakdown of Definition df-hlim
| Step | Hyp | Ref
| Expression |
| 1 | | chli 30893 |
. 2
class
⇝𝑣 |
| 2 | | cn 12249 |
. . . . . 6
class
ℕ |
| 3 | | chba 30885 |
. . . . . 6
class
ℋ |
| 4 | | vf |
. . . . . . 7
setvar 𝑓 |
| 5 | 4 | cv 1538 |
. . . . . 6
class 𝑓 |
| 6 | 2, 3, 5 | wf 6538 |
. . . . 5
wff 𝑓:ℕ⟶
ℋ |
| 7 | | vw |
. . . . . . 7
setvar 𝑤 |
| 8 | 7 | cv 1538 |
. . . . . 6
class 𝑤 |
| 9 | 8, 3 | wcel 2107 |
. . . . 5
wff 𝑤 ∈ ℋ |
| 10 | 6, 9 | wa 395 |
. . . 4
wff (𝑓:ℕ⟶ ℋ ∧
𝑤 ∈
ℋ) |
| 11 | | vz |
. . . . . . . . . . . 12
setvar 𝑧 |
| 12 | 11 | cv 1538 |
. . . . . . . . . . 11
class 𝑧 |
| 13 | 12, 5 | cfv 6542 |
. . . . . . . . . 10
class (𝑓‘𝑧) |
| 14 | | cmv 30891 |
. . . . . . . . . 10
class
−ℎ |
| 15 | 13, 8, 14 | co 7414 |
. . . . . . . . 9
class ((𝑓‘𝑧) −ℎ 𝑤) |
| 16 | | cno 30889 |
. . . . . . . . 9
class
normℎ |
| 17 | 15, 16 | cfv 6542 |
. . . . . . . 8
class
(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) |
| 18 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 19 | 18 | cv 1538 |
. . . . . . . 8
class 𝑥 |
| 20 | | clt 11278 |
. . . . . . . 8
class
< |
| 21 | 17, 19, 20 | wbr 5125 |
. . . . . . 7
wff
(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 |
| 22 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 23 | 22 | cv 1538 |
. . . . . . . 8
class 𝑦 |
| 24 | | cuz 12861 |
. . . . . . . 8
class
ℤ≥ |
| 25 | 23, 24 | cfv 6542 |
. . . . . . 7
class
(ℤ≥‘𝑦) |
| 26 | 21, 11, 25 | wral 3050 |
. . . . . 6
wff
∀𝑧 ∈
(ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 |
| 27 | 26, 22, 2 | wrex 3059 |
. . . . 5
wff
∃𝑦 ∈
ℕ ∀𝑧 ∈
(ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 |
| 28 | | crp 13017 |
. . . . 5
class
ℝ+ |
| 29 | 27, 18, 28 | wral 3050 |
. . . 4
wff
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 |
| 30 | 10, 29 | wa 395 |
. . 3
wff ((𝑓:ℕ⟶ ℋ ∧
𝑤 ∈ ℋ) ∧
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥) |
| 31 | 30, 4, 7 | copab 5187 |
. 2
class
{〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧
𝑤 ∈ ℋ) ∧
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} |
| 32 | 1, 31 | wceq 1539 |
1
wff
⇝𝑣 = {〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} |