Detailed syntax breakdown of Definition df-hlim
Step | Hyp | Ref
| Expression |
1 | | chli 29190 |
. 2
class
⇝𝑣 |
2 | | cn 11903 |
. . . . . 6
class
ℕ |
3 | | chba 29182 |
. . . . . 6
class
ℋ |
4 | | vf |
. . . . . . 7
setvar 𝑓 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑓 |
6 | 2, 3, 5 | wf 6414 |
. . . . 5
wff 𝑓:ℕ⟶
ℋ |
7 | | vw |
. . . . . . 7
setvar 𝑤 |
8 | 7 | cv 1538 |
. . . . . 6
class 𝑤 |
9 | 8, 3 | wcel 2108 |
. . . . 5
wff 𝑤 ∈ ℋ |
10 | 6, 9 | wa 395 |
. . . 4
wff (𝑓:ℕ⟶ ℋ ∧
𝑤 ∈
ℋ) |
11 | | vz |
. . . . . . . . . . . 12
setvar 𝑧 |
12 | 11 | cv 1538 |
. . . . . . . . . . 11
class 𝑧 |
13 | 12, 5 | cfv 6418 |
. . . . . . . . . 10
class (𝑓‘𝑧) |
14 | | cmv 29188 |
. . . . . . . . . 10
class
−ℎ |
15 | 13, 8, 14 | co 7255 |
. . . . . . . . 9
class ((𝑓‘𝑧) −ℎ 𝑤) |
16 | | cno 29186 |
. . . . . . . . 9
class
normℎ |
17 | 15, 16 | cfv 6418 |
. . . . . . . 8
class
(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) |
18 | | vx |
. . . . . . . . 9
setvar 𝑥 |
19 | 18 | cv 1538 |
. . . . . . . 8
class 𝑥 |
20 | | clt 10940 |
. . . . . . . 8
class
< |
21 | 17, 19, 20 | wbr 5070 |
. . . . . . 7
wff
(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 |
22 | | vy |
. . . . . . . . 9
setvar 𝑦 |
23 | 22 | cv 1538 |
. . . . . . . 8
class 𝑦 |
24 | | cuz 12511 |
. . . . . . . 8
class
ℤ≥ |
25 | 23, 24 | cfv 6418 |
. . . . . . 7
class
(ℤ≥‘𝑦) |
26 | 21, 11, 25 | wral 3063 |
. . . . . 6
wff
∀𝑧 ∈
(ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 |
27 | 26, 22, 2 | wrex 3064 |
. . . . 5
wff
∃𝑦 ∈
ℕ ∀𝑧 ∈
(ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 |
28 | | crp 12659 |
. . . . 5
class
ℝ+ |
29 | 27, 18, 28 | wral 3063 |
. . . 4
wff
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 |
30 | 10, 29 | wa 395 |
. . 3
wff ((𝑓:ℕ⟶ ℋ ∧
𝑤 ∈ ℋ) ∧
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥) |
31 | 30, 4, 7 | copab 5132 |
. 2
class
{〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧
𝑤 ∈ ℋ) ∧
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} |
32 | 1, 31 | wceq 1539 |
1
wff
⇝𝑣 = {〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} |