HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hva Structured version   Visualization version   GIF version

Theorem h2hva 30936
Description: The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2h.2 𝑈 ∈ NrmCVec
Assertion
Ref Expression
h2hva + = ( +𝑣𝑈)

Proof of Theorem h2hva
StepHypRef Expression
1 eqid 2729 . . . 4 ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩) = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
21vafval 30565 . . 3 ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩) = (1st ‘(1st ‘⟨⟨ + , · ⟩, norm⟩))
3 opex 5411 . . . . 5 ⟨ + , · ⟩ ∈ V
4 h2h.1 . . . . . . . 8 𝑈 = ⟨⟨ + , · ⟩, norm
5 h2h.2 . . . . . . . 8 𝑈 ∈ NrmCVec
64, 5eqeltrri 2825 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
7 nvex 30573 . . . . . . 7 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( + ∈ V ∧ · ∈ V ∧ norm ∈ V))
86, 7ax-mp 5 . . . . . 6 ( + ∈ V ∧ · ∈ V ∧ norm ∈ V)
98simp3i 1141 . . . . 5 norm ∈ V
103, 9op1st 7939 . . . 4 (1st ‘⟨⟨ + , · ⟩, norm⟩) = ⟨ + , ·
1110fveq2i 6829 . . 3 (1st ‘(1st ‘⟨⟨ + , · ⟩, norm⟩)) = (1st ‘⟨ + , · ⟩)
128simp1i 1139 . . . 4 + ∈ V
138simp2i 1140 . . . 4 · ∈ V
1412, 13op1st 7939 . . 3 (1st ‘⟨ + , · ⟩) = +
152, 11, 143eqtrri 2757 . 2 + = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
164fveq2i 6829 . 2 ( +𝑣𝑈) = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
1715, 16eqtr4i 2755 1 + = ( +𝑣𝑈)
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585  cfv 6486  1st c1st 7929  NrmCVeccnv 30546   +𝑣 cpv 30547   + cva 30882   · csm 30883  normcno 30885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-oprab 7357  df-1st 7931  df-vc 30521  df-nv 30554  df-va 30557
This theorem is referenced by:  h2hvs  30939  axhfvadd-zf  30944  axhvcom-zf  30945  axhvass-zf  30946  axhvaddid-zf  30948  axhvdistr1-zf  30952  axhvdistr2-zf  30953  axhis2-zf  30957  hhva  31128
  Copyright terms: Public domain W3C validator