HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hva Structured version   Visualization version   GIF version

Theorem h2hva 30910
Description: The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2h.2 𝑈 ∈ NrmCVec
Assertion
Ref Expression
h2hva + = ( +𝑣𝑈)

Proof of Theorem h2hva
StepHypRef Expression
1 eqid 2730 . . . 4 ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩) = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
21vafval 30539 . . 3 ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩) = (1st ‘(1st ‘⟨⟨ + , · ⟩, norm⟩))
3 opex 5427 . . . . 5 ⟨ + , · ⟩ ∈ V
4 h2h.1 . . . . . . . 8 𝑈 = ⟨⟨ + , · ⟩, norm
5 h2h.2 . . . . . . . 8 𝑈 ∈ NrmCVec
64, 5eqeltrri 2826 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
7 nvex 30547 . . . . . . 7 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( + ∈ V ∧ · ∈ V ∧ norm ∈ V))
86, 7ax-mp 5 . . . . . 6 ( + ∈ V ∧ · ∈ V ∧ norm ∈ V)
98simp3i 1141 . . . . 5 norm ∈ V
103, 9op1st 7979 . . . 4 (1st ‘⟨⟨ + , · ⟩, norm⟩) = ⟨ + , ·
1110fveq2i 6864 . . 3 (1st ‘(1st ‘⟨⟨ + , · ⟩, norm⟩)) = (1st ‘⟨ + , · ⟩)
128simp1i 1139 . . . 4 + ∈ V
138simp2i 1140 . . . 4 · ∈ V
1412, 13op1st 7979 . . 3 (1st ‘⟨ + , · ⟩) = +
152, 11, 143eqtrri 2758 . 2 + = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
164fveq2i 6864 . 2 ( +𝑣𝑈) = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
1715, 16eqtr4i 2756 1 + = ( +𝑣𝑈)
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598  cfv 6514  1st c1st 7969  NrmCVeccnv 30520   +𝑣 cpv 30521   + cva 30856   · csm 30857  normcno 30859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-oprab 7394  df-1st 7971  df-vc 30495  df-nv 30528  df-va 30531
This theorem is referenced by:  h2hvs  30913  axhfvadd-zf  30918  axhvcom-zf  30919  axhvass-zf  30920  axhvaddid-zf  30922  axhvdistr1-zf  30926  axhvdistr2-zf  30927  axhis2-zf  30931  hhva  31102
  Copyright terms: Public domain W3C validator