HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hva Structured version   Visualization version   GIF version

Theorem h2hva 29345
Description: The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2h.2 𝑈 ∈ NrmCVec
Assertion
Ref Expression
h2hva + = ( +𝑣𝑈)

Proof of Theorem h2hva
StepHypRef Expression
1 eqid 2740 . . . 4 ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩) = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
21vafval 28974 . . 3 ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩) = (1st ‘(1st ‘⟨⟨ + , · ⟩, norm⟩))
3 opex 5383 . . . . 5 ⟨ + , · ⟩ ∈ V
4 h2h.1 . . . . . . . 8 𝑈 = ⟨⟨ + , · ⟩, norm
5 h2h.2 . . . . . . . 8 𝑈 ∈ NrmCVec
64, 5eqeltrri 2838 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
7 nvex 28982 . . . . . . 7 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( + ∈ V ∧ · ∈ V ∧ norm ∈ V))
86, 7ax-mp 5 . . . . . 6 ( + ∈ V ∧ · ∈ V ∧ norm ∈ V)
98simp3i 1140 . . . . 5 norm ∈ V
103, 9op1st 7833 . . . 4 (1st ‘⟨⟨ + , · ⟩, norm⟩) = ⟨ + , ·
1110fveq2i 6774 . . 3 (1st ‘(1st ‘⟨⟨ + , · ⟩, norm⟩)) = (1st ‘⟨ + , · ⟩)
128simp1i 1138 . . . 4 + ∈ V
138simp2i 1139 . . . 4 · ∈ V
1412, 13op1st 7833 . . 3 (1st ‘⟨ + , · ⟩) = +
152, 11, 143eqtrri 2773 . 2 + = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
164fveq2i 6774 . 2 ( +𝑣𝑈) = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
1715, 16eqtr4i 2771 1 + = ( +𝑣𝑈)
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1542  wcel 2110  Vcvv 3431  cop 4573  cfv 6432  1st c1st 7823  NrmCVeccnv 28955   +𝑣 cpv 28956   + cva 29291   · csm 29292  normcno 29294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fo 6438  df-fv 6440  df-oprab 7276  df-1st 7825  df-vc 28930  df-nv 28963  df-va 28966
This theorem is referenced by:  h2hvs  29348  axhfvadd-zf  29353  axhvcom-zf  29354  axhvass-zf  29355  axhvaddid-zf  29357  axhvdistr1-zf  29361  axhvdistr2-zf  29362  axhis2-zf  29366  hhva  29537
  Copyright terms: Public domain W3C validator