| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > h2hva | Structured version Visualization version GIF version | ||
| Description: The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| h2hva | ⊢ +ℎ = ( +𝑣 ‘𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ ( +𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = ( +𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 2 | 1 | vafval 30539 | . . 3 ⊢ ( +𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (1st ‘(1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
| 3 | opex 5427 | . . . . 5 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ V | |
| 4 | h2h.1 | . . . . . . . 8 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 5 | h2h.2 | . . . . . . . 8 ⊢ 𝑈 ∈ NrmCVec | |
| 6 | 4, 5 | eqeltrri 2826 | . . . . . . 7 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
| 7 | nvex 30547 | . . . . . . 7 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
| 9 | 8 | simp3i 1141 | . . . . 5 ⊢ normℎ ∈ V |
| 10 | 3, 9 | op1st 7979 | . . . 4 ⊢ (1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = 〈 +ℎ , ·ℎ 〉 |
| 11 | 10 | fveq2i 6864 | . . 3 ⊢ (1st ‘(1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) = (1st ‘〈 +ℎ , ·ℎ 〉) |
| 12 | 8 | simp1i 1139 | . . . 4 ⊢ +ℎ ∈ V |
| 13 | 8 | simp2i 1140 | . . . 4 ⊢ ·ℎ ∈ V |
| 14 | 12, 13 | op1st 7979 | . . 3 ⊢ (1st ‘〈 +ℎ , ·ℎ 〉) = +ℎ |
| 15 | 2, 11, 14 | 3eqtrri 2758 | . 2 ⊢ +ℎ = ( +𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 16 | 4 | fveq2i 6864 | . 2 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 17 | 15, 16 | eqtr4i 2756 | 1 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 ‘cfv 6514 1st c1st 7969 NrmCVeccnv 30520 +𝑣 cpv 30521 +ℎ cva 30856 ·ℎ csm 30857 normℎcno 30859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-oprab 7394 df-1st 7971 df-vc 30495 df-nv 30528 df-va 30531 |
| This theorem is referenced by: h2hvs 30913 axhfvadd-zf 30918 axhvcom-zf 30919 axhvass-zf 30920 axhvaddid-zf 30922 axhvdistr1-zf 30926 axhvdistr2-zf 30927 axhis2-zf 30931 hhva 31102 |
| Copyright terms: Public domain | W3C validator |