![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h2hva | Structured version Visualization version GIF version |
Description: The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | ⊢ 𝑈 = ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
h2hva | ⊢ +ℎ = ( +𝑣 ‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . . 4 ⊢ ( +𝑣 ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) = ( +𝑣 ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) | |
2 | 1 | vafval 30400 | . . 3 ⊢ ( +𝑣 ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) = (1st ‘(1st ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩)) |
3 | opex 5460 | . . . . 5 ⊢ ⟨ +ℎ , ·ℎ ⟩ ∈ V | |
4 | h2h.1 | . . . . . . . 8 ⊢ 𝑈 = ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ | |
5 | h2h.2 | . . . . . . . 8 ⊢ 𝑈 ∈ NrmCVec | |
6 | 4, 5 | eqeltrri 2825 | . . . . . . 7 ⊢ ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ ∈ NrmCVec |
7 | nvex 30408 | . . . . . . 7 ⊢ (⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
9 | 8 | simp3i 1139 | . . . . 5 ⊢ normℎ ∈ V |
10 | 3, 9 | op1st 7995 | . . . 4 ⊢ (1st ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) = ⟨ +ℎ , ·ℎ ⟩ |
11 | 10 | fveq2i 6894 | . . 3 ⊢ (1st ‘(1st ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩)) = (1st ‘⟨ +ℎ , ·ℎ ⟩) |
12 | 8 | simp1i 1137 | . . . 4 ⊢ +ℎ ∈ V |
13 | 8 | simp2i 1138 | . . . 4 ⊢ ·ℎ ∈ V |
14 | 12, 13 | op1st 7995 | . . 3 ⊢ (1st ‘⟨ +ℎ , ·ℎ ⟩) = +ℎ |
15 | 2, 11, 14 | 3eqtrri 2760 | . 2 ⊢ +ℎ = ( +𝑣 ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
16 | 4 | fveq2i 6894 | . 2 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
17 | 15, 16 | eqtr4i 2758 | 1 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ⟨cop 4630 ‘cfv 6542 1st c1st 7985 NrmCVeccnv 30381 +𝑣 cpv 30382 +ℎ cva 30717 ·ℎ csm 30718 normℎcno 30720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-oprab 7418 df-1st 7987 df-vc 30356 df-nv 30389 df-va 30392 |
This theorem is referenced by: h2hvs 30774 axhfvadd-zf 30779 axhvcom-zf 30780 axhvass-zf 30781 axhvaddid-zf 30783 axhvdistr1-zf 30787 axhvdistr2-zf 30788 axhis2-zf 30792 hhva 30963 |
Copyright terms: Public domain | W3C validator |