Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapfval Structured version   Visualization version   GIF version

Theorem hdmapfval 39841
Description: Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmapval.h 𝐻 = (LHyp‘𝐾)
hdmapfval.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapfval.v 𝑉 = (Base‘𝑈)
hdmapfval.n 𝑁 = (LSpan‘𝑈)
hdmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmapfval.d 𝐷 = (Base‘𝐶)
hdmapfval.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmapfval.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmapfval.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapfval.k (𝜑 → (𝐾𝐴𝑊𝐻))
Assertion
Ref Expression
hdmapfval (𝜑𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
Distinct variable groups:   𝑦,𝑡,𝑧,𝐾   𝑦,𝐷   𝑡,𝐸,𝑦,𝑧   𝑡,𝐼,𝑦,𝑧   𝑡,𝑈,𝑦,𝑧   𝑡,𝑉,𝑦,𝑧   𝑡,𝑊,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑡)   𝐴(𝑦,𝑧,𝑡)   𝐶(𝑦,𝑧,𝑡)   𝐷(𝑧,𝑡)   𝑆(𝑦,𝑧,𝑡)   𝐻(𝑦,𝑧,𝑡)   𝐽(𝑦,𝑧,𝑡)   𝑁(𝑦,𝑧,𝑡)

Proof of Theorem hdmapfval
Dummy variables 𝑤 𝑒 𝑎 𝑖 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmapfval.k . 2 (𝜑 → (𝐾𝐴𝑊𝐻))
2 hdmapfval.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
3 hdmapval.h . . . . . 6 𝐻 = (LHyp‘𝐾)
43hdmapffval 39840 . . . . 5 (𝐾𝐴 → (HDMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}))
54fveq1d 6776 . . . 4 (𝐾𝐴 → ((HDMap‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊))
62, 5eqtrid 2790 . . 3 (𝐾𝐴𝑆 = ((𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊))
7 fveq2 6774 . . . . . . . . 9 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
87reseq2d 5891 . . . . . . . 8 (𝑤 = 𝑊 → ( I ↾ ((LTrn‘𝐾)‘𝑤)) = ( I ↾ ((LTrn‘𝐾)‘𝑊)))
98opeq2d 4811 . . . . . . 7 (𝑤 = 𝑊 → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩)
10 fveq2 6774 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
11 fveq2 6774 . . . . . . . . . 10 (𝑤 = 𝑊 → ((HDMap1‘𝐾)‘𝑤) = ((HDMap1‘𝐾)‘𝑊))
12 2fveq3 6779 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (Base‘((LCDual‘𝐾)‘𝑤)) = (Base‘((LCDual‘𝐾)‘𝑊)))
13 fveq2 6774 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑊 → ((HVMap‘𝐾)‘𝑤) = ((HVMap‘𝐾)‘𝑊))
1413fveq1d 6776 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑊 → (((HVMap‘𝐾)‘𝑤)‘𝑒) = (((HVMap‘𝐾)‘𝑊)‘𝑒))
1514oteq2d 4817 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑊 → ⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩ = ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩)
1615fveq2d 6778 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊 → (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩) = (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩))
1716oteq2d 4817 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)
1817fveq2d 6778 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
1918eqeq2d 2749 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))
2019imbi2d 341 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
2120ralbidv 3112 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
2212, 21riotaeqbidv 7235 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))) = (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
2322mpteq2dv 5176 . . . . . . . . . . 11 (𝑤 = 𝑊 → (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))
2423eleq2d 2824 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
2511, 24sbceqbid 3723 . . . . . . . . 9 (𝑤 = 𝑊 → ([((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
2625sbcbidv 3775 . . . . . . . 8 (𝑤 = 𝑊 → ([(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
2710, 26sbceqbid 3723 . . . . . . 7 (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
289, 27sbceqbid 3723 . . . . . 6 (𝑤 = 𝑊 → ([⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ / 𝑒][((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
29 opex 5379 . . . . . . 7 ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ V
30 fvex 6787 . . . . . . 7 ((DVecH‘𝐾)‘𝑊) ∈ V
31 fvex 6787 . . . . . . 7 (Base‘𝑢) ∈ V
32 simp1 1135 . . . . . . . . 9 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩)
33 hdmapfval.e . . . . . . . . 9 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
3432, 33eqtr4di 2796 . . . . . . . 8 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑒 = 𝐸)
35 simp2 1136 . . . . . . . . 9 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = ((DVecH‘𝐾)‘𝑊))
36 hdmapfval.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
3735, 36eqtr4di 2796 . . . . . . . 8 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = 𝑈)
38 simp3 1137 . . . . . . . . . 10 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = (Base‘𝑢))
3937fveq2d 6778 . . . . . . . . . 10 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → (Base‘𝑢) = (Base‘𝑈))
4038, 39eqtrd 2778 . . . . . . . . 9 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = (Base‘𝑈))
41 hdmapfval.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
4240, 41eqtr4di 2796 . . . . . . . 8 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = 𝑉)
43 fvex 6787 . . . . . . . . . 10 ((HDMap1‘𝐾)‘𝑊) ∈ V
44 id 22 . . . . . . . . . . . 12 (𝑖 = ((HDMap1‘𝐾)‘𝑊) → 𝑖 = ((HDMap1‘𝐾)‘𝑊))
45 hdmapfval.i . . . . . . . . . . . 12 𝐼 = ((HDMap1‘𝐾)‘𝑊)
4644, 45eqtr4di 2796 . . . . . . . . . . 11 (𝑖 = ((HDMap1‘𝐾)‘𝑊) → 𝑖 = 𝐼)
47 fveq1 6773 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
48 fveq1 6773 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐼 → (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩) = (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩))
4948oteq2d 4817 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝐼 → ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)
5049fveq2d 6778 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (𝐼‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
5147, 50eqtrd 2778 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐼 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
5251eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → (𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))
5352imbi2d 341 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
5453ralbidv 3112 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
5554riotabidv 7234 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))) = (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
5655mpteq2dv 5176 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))
5756eleq2d 2824 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
5846, 57syl 17 . . . . . . . . . 10 (𝑖 = ((HDMap1‘𝐾)‘𝑊) → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
5943, 58sbcie 3759 . . . . . . . . 9 ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))
60 simp3 1137 . . . . . . . . . . 11 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → 𝑣 = 𝑉)
61 hdmapfval.d . . . . . . . . . . . . . 14 𝐷 = (Base‘𝐶)
62 hdmapfval.c . . . . . . . . . . . . . . 15 𝐶 = ((LCDual‘𝐾)‘𝑊)
6362fveq2i 6777 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘((LCDual‘𝐾)‘𝑊))
6461, 63eqtr2i 2767 . . . . . . . . . . . . 13 (Base‘((LCDual‘𝐾)‘𝑊)) = 𝐷
6564a1i 11 . . . . . . . . . . . 12 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (Base‘((LCDual‘𝐾)‘𝑊)) = 𝐷)
66 simp2 1136 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → 𝑢 = 𝑈)
6766fveq2d 6778 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (LSpan‘𝑢) = (LSpan‘𝑈))
68 hdmapfval.n . . . . . . . . . . . . . . . . . . 19 𝑁 = (LSpan‘𝑈)
6967, 68eqtr4di 2796 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (LSpan‘𝑢) = 𝑁)
70 simp1 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → 𝑒 = 𝐸)
7170sneqd 4573 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → {𝑒} = {𝐸})
7269, 71fveq12d 6781 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ((LSpan‘𝑢)‘{𝑒}) = (𝑁‘{𝐸}))
7369fveq1d 6776 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ((LSpan‘𝑢)‘{𝑡}) = (𝑁‘{𝑡}))
7472, 73uneq12d 4098 . . . . . . . . . . . . . . . 16 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) = ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})))
7574eleq2d 2824 . . . . . . . . . . . . . . 15 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) ↔ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡}))))
7675notbid 318 . . . . . . . . . . . . . 14 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) ↔ ¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡}))))
7770oteq1d 4816 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩)
7870fveq2d 6778 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (((HVMap‘𝐾)‘𝑊)‘𝑒) = (((HVMap‘𝐾)‘𝑊)‘𝐸))
79 hdmapfval.j . . . . . . . . . . . . . . . . . . . . . 22 𝐽 = ((HVMap‘𝐾)‘𝑊)
8079fveq1i 6775 . . . . . . . . . . . . . . . . . . . . 21 (𝐽𝐸) = (((HVMap‘𝐾)‘𝑊)‘𝐸)
8178, 80eqtr4di 2796 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (((HVMap‘𝐾)‘𝑊)‘𝑒) = (𝐽𝐸))
8281oteq2d 4817 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝐸, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (𝐽𝐸), 𝑧⟩)
8377, 82eqtrd 2778 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (𝐽𝐸), 𝑧⟩)
8483fveq2d 6778 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩))
8584oteq2d 4817 . . . . . . . . . . . . . . . 16 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)
8685fveq2d 6778 . . . . . . . . . . . . . . 15 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))
8786eqeq2d 2749 . . . . . . . . . . . . . 14 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))
8876, 87imbi12d 345 . . . . . . . . . . . . 13 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
8960, 88raleqbidv 3336 . . . . . . . . . . . 12 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
9065, 89riotaeqbidv 7235 . . . . . . . . . . 11 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
9160, 90mpteq12dv 5165 . . . . . . . . . 10 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
9291eleq2d 2824 . . . . . . . . 9 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9359, 92syl5bb 283 . . . . . . . 8 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9434, 37, 42, 93syl3anc 1370 . . . . . . 7 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9529, 30, 31, 94sbc3ie 3802 . . . . . 6 ([⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ / 𝑒][((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
9628, 95bitrdi 287 . . . . 5 (𝑤 = 𝑊 → ([⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9796abbi1dv 2878 . . . 4 (𝑤 = 𝑊 → {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))} = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
98 eqid 2738 . . . 4 (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}) = (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})
9997, 98, 41mptfvmpt 7104 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊) = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
1006, 99sylan9eq 2798 . 2 ((𝐾𝐴𝑊𝐻) → 𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
1011, 100syl 17 1 (𝜑𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  [wsbc 3716  cun 3885  {csn 4561  cop 4567  cotp 4569  cmpt 5157   I cid 5488  cres 5591  cfv 6433  crio 7231  Basecbs 16912  LSpanclspn 20233  LHypclh 37998  LTrncltrn 38115  DVecHcdvh 39092  LCDualclcd 39600  HVMapchvm 39770  HDMap1chdma1 39805  HDMapchdma 39806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-hdmap 39808
This theorem is referenced by:  hdmapval  39842  hdmapfnN  39843
  Copyright terms: Public domain W3C validator