Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapfval Structured version   Visualization version   GIF version

Theorem hdmapfval 41846
Description: Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmapval.h 𝐻 = (LHyp‘𝐾)
hdmapfval.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapfval.v 𝑉 = (Base‘𝑈)
hdmapfval.n 𝑁 = (LSpan‘𝑈)
hdmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmapfval.d 𝐷 = (Base‘𝐶)
hdmapfval.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmapfval.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmapfval.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapfval.k (𝜑 → (𝐾𝐴𝑊𝐻))
Assertion
Ref Expression
hdmapfval (𝜑𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
Distinct variable groups:   𝑦,𝑡,𝑧,𝐾   𝑦,𝐷   𝑡,𝐸,𝑦,𝑧   𝑡,𝐼,𝑦,𝑧   𝑡,𝑈,𝑦,𝑧   𝑡,𝑉,𝑦,𝑧   𝑡,𝑊,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑡)   𝐴(𝑦,𝑧,𝑡)   𝐶(𝑦,𝑧,𝑡)   𝐷(𝑧,𝑡)   𝑆(𝑦,𝑧,𝑡)   𝐻(𝑦,𝑧,𝑡)   𝐽(𝑦,𝑧,𝑡)   𝑁(𝑦,𝑧,𝑡)

Proof of Theorem hdmapfval
Dummy variables 𝑤 𝑒 𝑎 𝑖 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmapfval.k . 2 (𝜑 → (𝐾𝐴𝑊𝐻))
2 hdmapfval.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
3 hdmapval.h . . . . . 6 𝐻 = (LHyp‘𝐾)
43hdmapffval 41845 . . . . 5 (𝐾𝐴 → (HDMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}))
54fveq1d 6878 . . . 4 (𝐾𝐴 → ((HDMap‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊))
62, 5eqtrid 2782 . . 3 (𝐾𝐴𝑆 = ((𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊))
7 fveq2 6876 . . . . . . . . 9 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
87reseq2d 5966 . . . . . . . 8 (𝑤 = 𝑊 → ( I ↾ ((LTrn‘𝐾)‘𝑤)) = ( I ↾ ((LTrn‘𝐾)‘𝑊)))
98opeq2d 4856 . . . . . . 7 (𝑤 = 𝑊 → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩)
10 fveq2 6876 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
11 fveq2 6876 . . . . . . . . . 10 (𝑤 = 𝑊 → ((HDMap1‘𝐾)‘𝑤) = ((HDMap1‘𝐾)‘𝑊))
12 2fveq3 6881 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (Base‘((LCDual‘𝐾)‘𝑤)) = (Base‘((LCDual‘𝐾)‘𝑊)))
13 fveq2 6876 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑊 → ((HVMap‘𝐾)‘𝑤) = ((HVMap‘𝐾)‘𝑊))
1413fveq1d 6878 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑊 → (((HVMap‘𝐾)‘𝑤)‘𝑒) = (((HVMap‘𝐾)‘𝑊)‘𝑒))
1514oteq2d 4862 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑊 → ⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩ = ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩)
1615fveq2d 6880 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊 → (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩) = (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩))
1716oteq2d 4862 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)
1817fveq2d 6880 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
1918eqeq2d 2746 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))
2019imbi2d 340 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
2120ralbidv 3163 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
2212, 21riotaeqbidv 7365 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))) = (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
2322mpteq2dv 5215 . . . . . . . . . . 11 (𝑤 = 𝑊 → (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))
2423eleq2d 2820 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
2511, 24sbceqbid 3772 . . . . . . . . 9 (𝑤 = 𝑊 → ([((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
2625sbcbidv 3821 . . . . . . . 8 (𝑤 = 𝑊 → ([(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
2710, 26sbceqbid 3772 . . . . . . 7 (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
289, 27sbceqbid 3772 . . . . . 6 (𝑤 = 𝑊 → ([⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ / 𝑒][((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
29 opex 5439 . . . . . . 7 ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ V
30 fvex 6889 . . . . . . 7 ((DVecH‘𝐾)‘𝑊) ∈ V
31 fvex 6889 . . . . . . 7 (Base‘𝑢) ∈ V
32 simp1 1136 . . . . . . . . 9 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩)
33 hdmapfval.e . . . . . . . . 9 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
3432, 33eqtr4di 2788 . . . . . . . 8 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑒 = 𝐸)
35 simp2 1137 . . . . . . . . 9 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = ((DVecH‘𝐾)‘𝑊))
36 hdmapfval.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
3735, 36eqtr4di 2788 . . . . . . . 8 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = 𝑈)
38 simp3 1138 . . . . . . . . . 10 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = (Base‘𝑢))
3937fveq2d 6880 . . . . . . . . . 10 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → (Base‘𝑢) = (Base‘𝑈))
4038, 39eqtrd 2770 . . . . . . . . 9 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = (Base‘𝑈))
41 hdmapfval.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
4240, 41eqtr4di 2788 . . . . . . . 8 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = 𝑉)
43 fvex 6889 . . . . . . . . . 10 ((HDMap1‘𝐾)‘𝑊) ∈ V
44 id 22 . . . . . . . . . . . 12 (𝑖 = ((HDMap1‘𝐾)‘𝑊) → 𝑖 = ((HDMap1‘𝐾)‘𝑊))
45 hdmapfval.i . . . . . . . . . . . 12 𝐼 = ((HDMap1‘𝐾)‘𝑊)
4644, 45eqtr4di 2788 . . . . . . . . . . 11 (𝑖 = ((HDMap1‘𝐾)‘𝑊) → 𝑖 = 𝐼)
47 fveq1 6875 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
48 fveq1 6875 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐼 → (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩) = (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩))
4948oteq2d 4862 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝐼 → ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)
5049fveq2d 6880 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (𝐼‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
5147, 50eqtrd 2770 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐼 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
5251eqeq2d 2746 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → (𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))
5352imbi2d 340 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
5453ralbidv 3163 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
5554riotabidv 7364 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))) = (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
5655mpteq2dv 5215 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))
5756eleq2d 2820 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
5846, 57syl 17 . . . . . . . . . 10 (𝑖 = ((HDMap1‘𝐾)‘𝑊) → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
5943, 58sbcie 3807 . . . . . . . . 9 ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))
60 simp3 1138 . . . . . . . . . . 11 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → 𝑣 = 𝑉)
61 hdmapfval.d . . . . . . . . . . . . . 14 𝐷 = (Base‘𝐶)
62 hdmapfval.c . . . . . . . . . . . . . . 15 𝐶 = ((LCDual‘𝐾)‘𝑊)
6362fveq2i 6879 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘((LCDual‘𝐾)‘𝑊))
6461, 63eqtr2i 2759 . . . . . . . . . . . . 13 (Base‘((LCDual‘𝐾)‘𝑊)) = 𝐷
6564a1i 11 . . . . . . . . . . . 12 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (Base‘((LCDual‘𝐾)‘𝑊)) = 𝐷)
66 simp2 1137 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → 𝑢 = 𝑈)
6766fveq2d 6880 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (LSpan‘𝑢) = (LSpan‘𝑈))
68 hdmapfval.n . . . . . . . . . . . . . . . . . . 19 𝑁 = (LSpan‘𝑈)
6967, 68eqtr4di 2788 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (LSpan‘𝑢) = 𝑁)
70 simp1 1136 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → 𝑒 = 𝐸)
7170sneqd 4613 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → {𝑒} = {𝐸})
7269, 71fveq12d 6883 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ((LSpan‘𝑢)‘{𝑒}) = (𝑁‘{𝐸}))
7369fveq1d 6878 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ((LSpan‘𝑢)‘{𝑡}) = (𝑁‘{𝑡}))
7472, 73uneq12d 4144 . . . . . . . . . . . . . . . 16 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) = ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})))
7574eleq2d 2820 . . . . . . . . . . . . . . 15 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) ↔ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡}))))
7675notbid 318 . . . . . . . . . . . . . 14 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) ↔ ¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡}))))
7770oteq1d 4861 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩)
7870fveq2d 6880 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (((HVMap‘𝐾)‘𝑊)‘𝑒) = (((HVMap‘𝐾)‘𝑊)‘𝐸))
79 hdmapfval.j . . . . . . . . . . . . . . . . . . . . . 22 𝐽 = ((HVMap‘𝐾)‘𝑊)
8079fveq1i 6877 . . . . . . . . . . . . . . . . . . . . 21 (𝐽𝐸) = (((HVMap‘𝐾)‘𝑊)‘𝐸)
8178, 80eqtr4di 2788 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (((HVMap‘𝐾)‘𝑊)‘𝑒) = (𝐽𝐸))
8281oteq2d 4862 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝐸, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (𝐽𝐸), 𝑧⟩)
8377, 82eqtrd 2770 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (𝐽𝐸), 𝑧⟩)
8483fveq2d 6880 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩))
8584oteq2d 4862 . . . . . . . . . . . . . . . 16 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)
8685fveq2d 6880 . . . . . . . . . . . . . . 15 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))
8786eqeq2d 2746 . . . . . . . . . . . . . 14 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))
8876, 87imbi12d 344 . . . . . . . . . . . . 13 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
8960, 88raleqbidv 3325 . . . . . . . . . . . 12 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
9065, 89riotaeqbidv 7365 . . . . . . . . . . 11 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
9160, 90mpteq12dv 5207 . . . . . . . . . 10 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
9291eleq2d 2820 . . . . . . . . 9 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9359, 92bitrid 283 . . . . . . . 8 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9434, 37, 42, 93syl3anc 1373 . . . . . . 7 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9529, 30, 31, 94sbc3ie 3843 . . . . . 6 ([⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ / 𝑒][((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
9628, 95bitrdi 287 . . . . 5 (𝑤 = 𝑊 → ([⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9796eqabcdv 2869 . . . 4 (𝑤 = 𝑊 → {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))} = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
98 eqid 2735 . . . 4 (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}) = (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})
9997, 98, 41mptfvmpt 7220 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊) = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
1006, 99sylan9eq 2790 . 2 ((𝐾𝐴𝑊𝐻) → 𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
1011, 100syl 17 1 (𝜑𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wral 3051  [wsbc 3765  cun 3924  {csn 4601  cop 4607  cotp 4609  cmpt 5201   I cid 5547  cres 5656  cfv 6531  crio 7361  Basecbs 17228  LSpanclspn 20928  LHypclh 40003  LTrncltrn 40120  DVecHcdvh 41097  LCDualclcd 41605  HVMapchvm 41775  HDMap1chdma1 41810  HDMapchdma 41811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-ot 4610  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-hdmap 41813
This theorem is referenced by:  hdmapval  41847  hdmapfnN  41848
  Copyright terms: Public domain W3C validator