Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapfval Structured version   Visualization version   GIF version

Theorem hdmapfval 38965
Description: Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmapval.h 𝐻 = (LHyp‘𝐾)
hdmapfval.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapfval.v 𝑉 = (Base‘𝑈)
hdmapfval.n 𝑁 = (LSpan‘𝑈)
hdmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmapfval.d 𝐷 = (Base‘𝐶)
hdmapfval.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmapfval.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmapfval.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapfval.k (𝜑 → (𝐾𝐴𝑊𝐻))
Assertion
Ref Expression
hdmapfval (𝜑𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
Distinct variable groups:   𝑦,𝑡,𝑧,𝐾   𝑦,𝐷   𝑡,𝐸,𝑦,𝑧   𝑡,𝐼,𝑦,𝑧   𝑡,𝑈,𝑦,𝑧   𝑡,𝑉,𝑦,𝑧   𝑡,𝑊,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑡)   𝐴(𝑦,𝑧,𝑡)   𝐶(𝑦,𝑧,𝑡)   𝐷(𝑧,𝑡)   𝑆(𝑦,𝑧,𝑡)   𝐻(𝑦,𝑧,𝑡)   𝐽(𝑦,𝑧,𝑡)   𝑁(𝑦,𝑧,𝑡)

Proof of Theorem hdmapfval
Dummy variables 𝑤 𝑒 𝑎 𝑖 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmapfval.k . 2 (𝜑 → (𝐾𝐴𝑊𝐻))
2 hdmapfval.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
3 hdmapval.h . . . . . 6 𝐻 = (LHyp‘𝐾)
43hdmapffval 38964 . . . . 5 (𝐾𝐴 → (HDMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}))
54fveq1d 6674 . . . 4 (𝐾𝐴 → ((HDMap‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊))
62, 5syl5eq 2870 . . 3 (𝐾𝐴𝑆 = ((𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊))
7 fveq2 6672 . . . . . . . . 9 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
87reseq2d 5855 . . . . . . . 8 (𝑤 = 𝑊 → ( I ↾ ((LTrn‘𝐾)‘𝑤)) = ( I ↾ ((LTrn‘𝐾)‘𝑊)))
98opeq2d 4812 . . . . . . 7 (𝑤 = 𝑊 → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩)
10 fveq2 6672 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
11 fveq2 6672 . . . . . . . . . 10 (𝑤 = 𝑊 → ((HDMap1‘𝐾)‘𝑤) = ((HDMap1‘𝐾)‘𝑊))
12 2fveq3 6677 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (Base‘((LCDual‘𝐾)‘𝑤)) = (Base‘((LCDual‘𝐾)‘𝑊)))
13 fveq2 6672 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑊 → ((HVMap‘𝐾)‘𝑤) = ((HVMap‘𝐾)‘𝑊))
1413fveq1d 6674 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑊 → (((HVMap‘𝐾)‘𝑤)‘𝑒) = (((HVMap‘𝐾)‘𝑊)‘𝑒))
1514oteq2d 4818 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑊 → ⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩ = ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩)
1615fveq2d 6676 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊 → (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩) = (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩))
1716oteq2d 4818 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)
1817fveq2d 6676 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
1918eqeq2d 2834 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))
2019imbi2d 343 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
2120ralbidv 3199 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
2212, 21riotaeqbidv 7119 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))) = (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
2322mpteq2dv 5164 . . . . . . . . . . 11 (𝑤 = 𝑊 → (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))
2423eleq2d 2900 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
2511, 24sbceqbid 3781 . . . . . . . . 9 (𝑤 = 𝑊 → ([((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
2625sbcbidv 3829 . . . . . . . 8 (𝑤 = 𝑊 → ([(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
2710, 26sbceqbid 3781 . . . . . . 7 (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
289, 27sbceqbid 3781 . . . . . 6 (𝑤 = 𝑊 → ([⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ / 𝑒][((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
29 opex 5358 . . . . . . 7 ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ V
30 fvex 6685 . . . . . . 7 ((DVecH‘𝐾)‘𝑊) ∈ V
31 fvex 6685 . . . . . . 7 (Base‘𝑢) ∈ V
32 simp1 1132 . . . . . . . . 9 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩)
33 hdmapfval.e . . . . . . . . 9 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
3432, 33syl6eqr 2876 . . . . . . . 8 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑒 = 𝐸)
35 simp2 1133 . . . . . . . . 9 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = ((DVecH‘𝐾)‘𝑊))
36 hdmapfval.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
3735, 36syl6eqr 2876 . . . . . . . 8 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = 𝑈)
38 simp3 1134 . . . . . . . . . 10 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = (Base‘𝑢))
3937fveq2d 6676 . . . . . . . . . 10 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → (Base‘𝑢) = (Base‘𝑈))
4038, 39eqtrd 2858 . . . . . . . . 9 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = (Base‘𝑈))
41 hdmapfval.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
4240, 41syl6eqr 2876 . . . . . . . 8 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = 𝑉)
43 fvex 6685 . . . . . . . . . 10 ((HDMap1‘𝐾)‘𝑊) ∈ V
44 id 22 . . . . . . . . . . . 12 (𝑖 = ((HDMap1‘𝐾)‘𝑊) → 𝑖 = ((HDMap1‘𝐾)‘𝑊))
45 hdmapfval.i . . . . . . . . . . . 12 𝐼 = ((HDMap1‘𝐾)‘𝑊)
4644, 45syl6eqr 2876 . . . . . . . . . . 11 (𝑖 = ((HDMap1‘𝐾)‘𝑊) → 𝑖 = 𝐼)
47 fveq1 6671 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
48 fveq1 6671 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐼 → (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩) = (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩))
4948oteq2d 4818 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝐼 → ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)
5049fveq2d 6676 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (𝐼‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
5147, 50eqtrd 2858 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐼 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
5251eqeq2d 2834 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → (𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))
5352imbi2d 343 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
5453ralbidv 3199 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
5554riotabidv 7118 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))) = (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
5655mpteq2dv 5164 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))
5756eleq2d 2900 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
5846, 57syl 17 . . . . . . . . . 10 (𝑖 = ((HDMap1‘𝐾)‘𝑊) → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
5943, 58sbcie 3814 . . . . . . . . 9 ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))
60 simp3 1134 . . . . . . . . . . 11 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → 𝑣 = 𝑉)
61 hdmapfval.d . . . . . . . . . . . . . 14 𝐷 = (Base‘𝐶)
62 hdmapfval.c . . . . . . . . . . . . . . 15 𝐶 = ((LCDual‘𝐾)‘𝑊)
6362fveq2i 6675 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘((LCDual‘𝐾)‘𝑊))
6461, 63eqtr2i 2847 . . . . . . . . . . . . 13 (Base‘((LCDual‘𝐾)‘𝑊)) = 𝐷
6564a1i 11 . . . . . . . . . . . 12 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (Base‘((LCDual‘𝐾)‘𝑊)) = 𝐷)
66 simp2 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → 𝑢 = 𝑈)
6766fveq2d 6676 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (LSpan‘𝑢) = (LSpan‘𝑈))
68 hdmapfval.n . . . . . . . . . . . . . . . . . . 19 𝑁 = (LSpan‘𝑈)
6967, 68syl6eqr 2876 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (LSpan‘𝑢) = 𝑁)
70 simp1 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → 𝑒 = 𝐸)
7170sneqd 4581 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → {𝑒} = {𝐸})
7269, 71fveq12d 6679 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ((LSpan‘𝑢)‘{𝑒}) = (𝑁‘{𝐸}))
7369fveq1d 6674 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ((LSpan‘𝑢)‘{𝑡}) = (𝑁‘{𝑡}))
7472, 73uneq12d 4142 . . . . . . . . . . . . . . . 16 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) = ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})))
7574eleq2d 2900 . . . . . . . . . . . . . . 15 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) ↔ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡}))))
7675notbid 320 . . . . . . . . . . . . . 14 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) ↔ ¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡}))))
7770oteq1d 4817 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩)
7870fveq2d 6676 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (((HVMap‘𝐾)‘𝑊)‘𝑒) = (((HVMap‘𝐾)‘𝑊)‘𝐸))
79 hdmapfval.j . . . . . . . . . . . . . . . . . . . . . 22 𝐽 = ((HVMap‘𝐾)‘𝑊)
8079fveq1i 6673 . . . . . . . . . . . . . . . . . . . . 21 (𝐽𝐸) = (((HVMap‘𝐾)‘𝑊)‘𝐸)
8178, 80syl6eqr 2876 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (((HVMap‘𝐾)‘𝑊)‘𝑒) = (𝐽𝐸))
8281oteq2d 4818 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝐸, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (𝐽𝐸), 𝑧⟩)
8377, 82eqtrd 2858 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (𝐽𝐸), 𝑧⟩)
8483fveq2d 6676 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩))
8584oteq2d 4818 . . . . . . . . . . . . . . . 16 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)
8685fveq2d 6676 . . . . . . . . . . . . . . 15 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))
8786eqeq2d 2834 . . . . . . . . . . . . . 14 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))
8876, 87imbi12d 347 . . . . . . . . . . . . 13 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
8960, 88raleqbidv 3403 . . . . . . . . . . . 12 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
9065, 89riotaeqbidv 7119 . . . . . . . . . . 11 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
9160, 90mpteq12dv 5153 . . . . . . . . . 10 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
9291eleq2d 2900 . . . . . . . . 9 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9359, 92syl5bb 285 . . . . . . . 8 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9434, 37, 42, 93syl3anc 1367 . . . . . . 7 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9529, 30, 31, 94sbc3ie 3854 . . . . . 6 ([⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ / 𝑒][((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
9628, 95syl6bb 289 . . . . 5 (𝑤 = 𝑊 → ([⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9796abbi1dv 2954 . . . 4 (𝑤 = 𝑊 → {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))} = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
98 eqid 2823 . . . 4 (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}) = (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})
9997, 98, 41mptfvmpt 6992 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊) = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
1006, 99sylan9eq 2878 . 2 ((𝐾𝐴𝑊𝐻) → 𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
1011, 100syl 17 1 (𝜑𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2801  wral 3140  [wsbc 3774  cun 3936  {csn 4569  cop 4575  cotp 4577  cmpt 5148   I cid 5461  cres 5559  cfv 6357  crio 7115  Basecbs 16485  LSpanclspn 19745  LHypclh 37122  LTrncltrn 37239  DVecHcdvh 38216  LCDualclcd 38724  HVMapchvm 38894  HDMap1chdma1 38929  HDMapchdma 38930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-ot 4578  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-hdmap 38932
This theorem is referenced by:  hdmapval  38966  hdmapfnN  38967
  Copyright terms: Public domain W3C validator