Step | Hyp | Ref
| Expression |
1 | | hdmapfval.k |
. 2
⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) |
2 | | hdmapfval.s |
. . . 4
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
3 | | hdmapval.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
4 | 3 | hdmapffval 39387 |
. . . . 5
⊢ (𝐾 ∈ 𝐴 → (HDMap‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))〉 / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})) |
5 | 4 | fveq1d 6653 |
. . . 4
⊢ (𝐾 ∈ 𝐴 → ((HDMap‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))〉 / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})‘𝑊)) |
6 | 2, 5 | syl5eq 2806 |
. . 3
⊢ (𝐾 ∈ 𝐴 → 𝑆 = ((𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))〉 / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})‘𝑊)) |
7 | | fveq2 6651 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊)) |
8 | 7 | reseq2d 5816 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ( I ↾ ((LTrn‘𝐾)‘𝑤)) = ( I ↾ ((LTrn‘𝐾)‘𝑊))) |
9 | 8 | opeq2d 4763 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → 〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑤))〉 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉) |
10 | | fveq2 6651 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊)) |
11 | | fveq2 6651 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → ((HDMap1‘𝐾)‘𝑤) = ((HDMap1‘𝐾)‘𝑊)) |
12 | | 2fveq3 6656 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑊 → (Base‘((LCDual‘𝐾)‘𝑤)) = (Base‘((LCDual‘𝐾)‘𝑊))) |
13 | | fveq2 6651 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑊 → ((HVMap‘𝐾)‘𝑤) = ((HVMap‘𝐾)‘𝑊)) |
14 | 13 | fveq1d 6653 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑊 → (((HVMap‘𝐾)‘𝑤)‘𝑒) = (((HVMap‘𝐾)‘𝑊)‘𝑒)) |
15 | 14 | oteq2d 4769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑊 → 〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉 = 〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉) |
16 | 15 | fveq2d 6655 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑊 → (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉) = (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉)) |
17 | 16 | oteq2d 4769 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑊 → 〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉 = 〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉) |
18 | 17 | fveq2d 6655 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑊 → (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉) = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)) |
19 | 18 | eqeq2d 2770 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑊 → (𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉) ↔ 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉))) |
20 | 19 | imbi2d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑊 → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)) ↔ (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) |
21 | 20 | ralbidv 3124 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑊 → (∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)) ↔ ∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) |
22 | 12, 21 | riotaeqbidv 7104 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))) = (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) |
23 | 22 | mpteq2dv 5121 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) = (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉))))) |
24 | 23 | eleq2d 2836 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))))) |
25 | 11, 24 | sbceqbid 3700 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ([((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) ↔
[((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))))) |
26 | 25 | sbcbidv 3747 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ([(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) ↔ [(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))))) |
27 | 10, 26 | sbceqbid 3700 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) ↔ [((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))))) |
28 | 9, 27 | sbceqbid 3700 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ([〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))〉 / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) ↔ [〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 / 𝑒][((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))))) |
29 | | opex 5317 |
. . . . . . 7
⊢ 〈( I
↾ (Base‘𝐾)), (
I ↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ V |
30 | | fvex 6664 |
. . . . . . 7
⊢
((DVecH‘𝐾)‘𝑊) ∈ V |
31 | | fvex 6664 |
. . . . . . 7
⊢
(Base‘𝑢)
∈ V |
32 | | simp1 1134 |
. . . . . . . . 9
⊢ ((𝑒 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑒 = 〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉) |
33 | | hdmapfval.e |
. . . . . . . . 9
⊢ 𝐸 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 |
34 | 32, 33 | eqtr4di 2812 |
. . . . . . . 8
⊢ ((𝑒 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑒 = 𝐸) |
35 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝑒 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = ((DVecH‘𝐾)‘𝑊)) |
36 | | hdmapfval.u |
. . . . . . . . 9
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
37 | 35, 36 | eqtr4di 2812 |
. . . . . . . 8
⊢ ((𝑒 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = 𝑈) |
38 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝑒 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = (Base‘𝑢)) |
39 | 37 | fveq2d 6655 |
. . . . . . . . . 10
⊢ ((𝑒 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → (Base‘𝑢) = (Base‘𝑈)) |
40 | 38, 39 | eqtrd 2794 |
. . . . . . . . 9
⊢ ((𝑒 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = (Base‘𝑈)) |
41 | | hdmapfval.v |
. . . . . . . . 9
⊢ 𝑉 = (Base‘𝑈) |
42 | 40, 41 | eqtr4di 2812 |
. . . . . . . 8
⊢ ((𝑒 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = 𝑉) |
43 | | fvex 6664 |
. . . . . . . . . 10
⊢
((HDMap1‘𝐾)‘𝑊) ∈ V |
44 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑖 = ((HDMap1‘𝐾)‘𝑊) → 𝑖 = ((HDMap1‘𝐾)‘𝑊)) |
45 | | hdmapfval.i |
. . . . . . . . . . . 12
⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
46 | 44, 45 | eqtr4di 2812 |
. . . . . . . . . . 11
⊢ (𝑖 = ((HDMap1‘𝐾)‘𝑊) → 𝑖 = 𝐼) |
47 | | fveq1 6650 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝐼 → (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉) = (𝐼‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)) |
48 | | fveq1 6650 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝐼 → (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉) = (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉)) |
49 | 48 | oteq2d 4769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝐼 → 〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉 = 〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉) |
50 | 49 | fveq2d 6655 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝐼 → (𝐼‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉) = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)) |
51 | 47, 50 | eqtrd 2794 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝐼 → (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉) = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)) |
52 | 51 | eqeq2d 2770 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝐼 → (𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉) ↔ 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉))) |
53 | 52 | imbi2d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝐼 → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)) ↔ (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) |
54 | 53 | ralbidv 3124 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝐼 → (∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)) ↔ ∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) |
55 | 54 | riotabidv 7103 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐼 → (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉))) = (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) |
56 | 55 | mpteq2dv 5121 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) = (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉))))) |
57 | 56 | eleq2d 2836 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐼 → (𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))))) |
58 | 46, 57 | syl 17 |
. . . . . . . . . 10
⊢ (𝑖 = ((HDMap1‘𝐾)‘𝑊) → (𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))))) |
59 | 43, 58 | sbcie 3733 |
. . . . . . . . 9
⊢
([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉))))) |
60 | | simp3 1136 |
. . . . . . . . . . 11
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → 𝑣 = 𝑉) |
61 | | hdmapfval.d |
. . . . . . . . . . . . . 14
⊢ 𝐷 = (Base‘𝐶) |
62 | | hdmapfval.c |
. . . . . . . . . . . . . . 15
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
63 | 62 | fveq2i 6654 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐶) =
(Base‘((LCDual‘𝐾)‘𝑊)) |
64 | 61, 63 | eqtr2i 2783 |
. . . . . . . . . . . . 13
⊢
(Base‘((LCDual‘𝐾)‘𝑊)) = 𝐷 |
65 | 64 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (Base‘((LCDual‘𝐾)‘𝑊)) = 𝐷) |
66 | | simp2 1135 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → 𝑢 = 𝑈) |
67 | 66 | fveq2d 6655 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (LSpan‘𝑢) = (LSpan‘𝑈)) |
68 | | hdmapfval.n |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑁 = (LSpan‘𝑈) |
69 | 67, 68 | eqtr4di 2812 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (LSpan‘𝑢) = 𝑁) |
70 | | simp1 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → 𝑒 = 𝐸) |
71 | 70 | sneqd 4527 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → {𝑒} = {𝐸}) |
72 | 69, 71 | fveq12d 6658 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ((LSpan‘𝑢)‘{𝑒}) = (𝑁‘{𝐸})) |
73 | 69 | fveq1d 6653 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ((LSpan‘𝑢)‘{𝑡}) = (𝑁‘{𝑡})) |
74 | 72, 73 | uneq12d 4065 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) = ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡}))) |
75 | 74 | eleq2d 2836 |
. . . . . . . . . . . . . . 15
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) ↔ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})))) |
76 | 75 | notbid 322 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) ↔ ¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})))) |
77 | 70 | oteq1d 4768 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → 〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉 = 〈𝐸, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉) |
78 | 70 | fveq2d 6655 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (((HVMap‘𝐾)‘𝑊)‘𝑒) = (((HVMap‘𝐾)‘𝑊)‘𝐸)) |
79 | | hdmapfval.j |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
80 | 79 | fveq1i 6652 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐽‘𝐸) = (((HVMap‘𝐾)‘𝑊)‘𝐸) |
81 | 78, 80 | eqtr4di 2812 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (((HVMap‘𝐾)‘𝑊)‘𝑒) = (𝐽‘𝐸)) |
82 | 81 | oteq2d 4769 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → 〈𝐸, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉 = 〈𝐸, (𝐽‘𝐸), 𝑧〉) |
83 | 77, 82 | eqtrd 2794 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → 〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉 = 〈𝐸, (𝐽‘𝐸), 𝑧〉) |
84 | 83 | fveq2d 6655 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉)) |
85 | 84 | oteq2d 4769 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → 〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉 = 〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉) |
86 | 85 | fveq2d 6655 |
. . . . . . . . . . . . . . 15
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉) = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)) |
87 | 86 | eqeq2d 2770 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉) ↔ 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))) |
88 | 76, 87 | imbi12d 349 |
. . . . . . . . . . . . 13
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)))) |
89 | 60, 88 | raleqbidv 3317 |
. . . . . . . . . . . 12
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)) ↔ ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)))) |
90 | 65, 89 | riotaeqbidv 7104 |
. . . . . . . . . . 11
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉))) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)))) |
91 | 60, 90 | mpteq12dv 5110 |
. . . . . . . . . 10
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))) |
92 | 91 | eleq2d 2836 |
. . . . . . . . 9
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)))))) |
93 | 59, 92 | syl5bb 286 |
. . . . . . . 8
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)))))) |
94 | 34, 37, 42, 93 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝑒 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)))))) |
95 | 29, 30, 31, 94 | sbc3ie 3771 |
. . . . . 6
⊢
([〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 / 𝑒][((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧〉), 𝑡〉)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))) |
96 | 28, 95 | syl6bb 291 |
. . . . 5
⊢ (𝑤 = 𝑊 → ([〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))〉 / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉)))))) |
97 | 96 | abbi1dv 2889 |
. . . 4
⊢ (𝑤 = 𝑊 → {𝑎 ∣ [〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))〉 / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))} = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))) |
98 | | eqid 2759 |
. . . 4
⊢ (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))〉 / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))}) = (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))〉 / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))}) |
99 | 97, 98, 41 | mptfvmpt 6975 |
. . 3
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))〉 / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})‘𝑊) = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))) |
100 | 6, 99 | sylan9eq 2814 |
. 2
⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝑆 = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))) |
101 | 1, 100 | syl 17 |
1
⊢ (𝜑 → 𝑆 = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))) |