Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapfval Structured version   Visualization version   GIF version

Theorem hdmapfval 39123
Description: Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmapval.h 𝐻 = (LHyp‘𝐾)
hdmapfval.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapfval.v 𝑉 = (Base‘𝑈)
hdmapfval.n 𝑁 = (LSpan‘𝑈)
hdmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmapfval.d 𝐷 = (Base‘𝐶)
hdmapfval.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmapfval.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmapfval.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapfval.k (𝜑 → (𝐾𝐴𝑊𝐻))
Assertion
Ref Expression
hdmapfval (𝜑𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
Distinct variable groups:   𝑦,𝑡,𝑧,𝐾   𝑦,𝐷   𝑡,𝐸,𝑦,𝑧   𝑡,𝐼,𝑦,𝑧   𝑡,𝑈,𝑦,𝑧   𝑡,𝑉,𝑦,𝑧   𝑡,𝑊,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑡)   𝐴(𝑦,𝑧,𝑡)   𝐶(𝑦,𝑧,𝑡)   𝐷(𝑧,𝑡)   𝑆(𝑦,𝑧,𝑡)   𝐻(𝑦,𝑧,𝑡)   𝐽(𝑦,𝑧,𝑡)   𝑁(𝑦,𝑧,𝑡)

Proof of Theorem hdmapfval
Dummy variables 𝑤 𝑒 𝑎 𝑖 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmapfval.k . 2 (𝜑 → (𝐾𝐴𝑊𝐻))
2 hdmapfval.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
3 hdmapval.h . . . . . 6 𝐻 = (LHyp‘𝐾)
43hdmapffval 39122 . . . . 5 (𝐾𝐴 → (HDMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}))
54fveq1d 6647 . . . 4 (𝐾𝐴 → ((HDMap‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊))
62, 5syl5eq 2845 . . 3 (𝐾𝐴𝑆 = ((𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊))
7 fveq2 6645 . . . . . . . . 9 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
87reseq2d 5818 . . . . . . . 8 (𝑤 = 𝑊 → ( I ↾ ((LTrn‘𝐾)‘𝑤)) = ( I ↾ ((LTrn‘𝐾)‘𝑊)))
98opeq2d 4772 . . . . . . 7 (𝑤 = 𝑊 → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩)
10 fveq2 6645 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
11 fveq2 6645 . . . . . . . . . 10 (𝑤 = 𝑊 → ((HDMap1‘𝐾)‘𝑤) = ((HDMap1‘𝐾)‘𝑊))
12 2fveq3 6650 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (Base‘((LCDual‘𝐾)‘𝑤)) = (Base‘((LCDual‘𝐾)‘𝑊)))
13 fveq2 6645 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑊 → ((HVMap‘𝐾)‘𝑤) = ((HVMap‘𝐾)‘𝑊))
1413fveq1d 6647 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑊 → (((HVMap‘𝐾)‘𝑤)‘𝑒) = (((HVMap‘𝐾)‘𝑊)‘𝑒))
1514oteq2d 4778 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑊 → ⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩ = ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩)
1615fveq2d 6649 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊 → (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩) = (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩))
1716oteq2d 4778 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)
1817fveq2d 6649 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
1918eqeq2d 2809 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))
2019imbi2d 344 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
2120ralbidv 3162 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
2212, 21riotaeqbidv 7096 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))) = (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
2322mpteq2dv 5126 . . . . . . . . . . 11 (𝑤 = 𝑊 → (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))
2423eleq2d 2875 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
2511, 24sbceqbid 3727 . . . . . . . . 9 (𝑤 = 𝑊 → ([((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
2625sbcbidv 3774 . . . . . . . 8 (𝑤 = 𝑊 → ([(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
2710, 26sbceqbid 3727 . . . . . . 7 (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
289, 27sbceqbid 3727 . . . . . 6 (𝑤 = 𝑊 → ([⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ / 𝑒][((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
29 opex 5321 . . . . . . 7 ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ V
30 fvex 6658 . . . . . . 7 ((DVecH‘𝐾)‘𝑊) ∈ V
31 fvex 6658 . . . . . . 7 (Base‘𝑢) ∈ V
32 simp1 1133 . . . . . . . . 9 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩)
33 hdmapfval.e . . . . . . . . 9 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
3432, 33eqtr4di 2851 . . . . . . . 8 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑒 = 𝐸)
35 simp2 1134 . . . . . . . . 9 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = ((DVecH‘𝐾)‘𝑊))
36 hdmapfval.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
3735, 36eqtr4di 2851 . . . . . . . 8 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = 𝑈)
38 simp3 1135 . . . . . . . . . 10 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = (Base‘𝑢))
3937fveq2d 6649 . . . . . . . . . 10 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → (Base‘𝑢) = (Base‘𝑈))
4038, 39eqtrd 2833 . . . . . . . . 9 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = (Base‘𝑈))
41 hdmapfval.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
4240, 41eqtr4di 2851 . . . . . . . 8 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = 𝑉)
43 fvex 6658 . . . . . . . . . 10 ((HDMap1‘𝐾)‘𝑊) ∈ V
44 id 22 . . . . . . . . . . . 12 (𝑖 = ((HDMap1‘𝐾)‘𝑊) → 𝑖 = ((HDMap1‘𝐾)‘𝑊))
45 hdmapfval.i . . . . . . . . . . . 12 𝐼 = ((HDMap1‘𝐾)‘𝑊)
4644, 45eqtr4di 2851 . . . . . . . . . . 11 (𝑖 = ((HDMap1‘𝐾)‘𝑊) → 𝑖 = 𝐼)
47 fveq1 6644 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
48 fveq1 6644 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐼 → (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩) = (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩))
4948oteq2d 4778 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝐼 → ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)
5049fveq2d 6649 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (𝐼‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
5147, 50eqtrd 2833 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐼 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))
5251eqeq2d 2809 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → (𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))
5352imbi2d 344 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
5453ralbidv 3162 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
5554riotabidv 7095 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))) = (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))
5655mpteq2dv 5126 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))
5756eleq2d 2875 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
5846, 57syl 17 . . . . . . . . . 10 (𝑖 = ((HDMap1‘𝐾)‘𝑊) → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))))
5943, 58sbcie 3760 . . . . . . . . 9 ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))
60 simp3 1135 . . . . . . . . . . 11 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → 𝑣 = 𝑉)
61 hdmapfval.d . . . . . . . . . . . . . 14 𝐷 = (Base‘𝐶)
62 hdmapfval.c . . . . . . . . . . . . . . 15 𝐶 = ((LCDual‘𝐾)‘𝑊)
6362fveq2i 6648 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘((LCDual‘𝐾)‘𝑊))
6461, 63eqtr2i 2822 . . . . . . . . . . . . 13 (Base‘((LCDual‘𝐾)‘𝑊)) = 𝐷
6564a1i 11 . . . . . . . . . . . 12 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (Base‘((LCDual‘𝐾)‘𝑊)) = 𝐷)
66 simp2 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → 𝑢 = 𝑈)
6766fveq2d 6649 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (LSpan‘𝑢) = (LSpan‘𝑈))
68 hdmapfval.n . . . . . . . . . . . . . . . . . . 19 𝑁 = (LSpan‘𝑈)
6967, 68eqtr4di 2851 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (LSpan‘𝑢) = 𝑁)
70 simp1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → 𝑒 = 𝐸)
7170sneqd 4537 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → {𝑒} = {𝐸})
7269, 71fveq12d 6652 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ((LSpan‘𝑢)‘{𝑒}) = (𝑁‘{𝐸}))
7369fveq1d 6647 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ((LSpan‘𝑢)‘{𝑡}) = (𝑁‘{𝑡}))
7472, 73uneq12d 4091 . . . . . . . . . . . . . . . 16 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) = ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})))
7574eleq2d 2875 . . . . . . . . . . . . . . 15 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) ↔ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡}))))
7675notbid 321 . . . . . . . . . . . . . 14 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) ↔ ¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡}))))
7770oteq1d 4777 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩)
7870fveq2d 6649 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (((HVMap‘𝐾)‘𝑊)‘𝑒) = (((HVMap‘𝐾)‘𝑊)‘𝐸))
79 hdmapfval.j . . . . . . . . . . . . . . . . . . . . . 22 𝐽 = ((HVMap‘𝐾)‘𝑊)
8079fveq1i 6646 . . . . . . . . . . . . . . . . . . . . 21 (𝐽𝐸) = (((HVMap‘𝐾)‘𝑊)‘𝐸)
8178, 80eqtr4di 2851 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (((HVMap‘𝐾)‘𝑊)‘𝑒) = (𝐽𝐸))
8281oteq2d 4778 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝐸, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (𝐽𝐸), 𝑧⟩)
8377, 82eqtrd 2833 . . . . . . . . . . . . . . . . . 18 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (𝐽𝐸), 𝑧⟩)
8483fveq2d 6649 . . . . . . . . . . . . . . . . 17 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩))
8584oteq2d 4778 . . . . . . . . . . . . . . . 16 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)
8685fveq2d 6649 . . . . . . . . . . . . . . 15 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))
8786eqeq2d 2809 . . . . . . . . . . . . . 14 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))
8876, 87imbi12d 348 . . . . . . . . . . . . 13 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
8960, 88raleqbidv 3354 . . . . . . . . . . . 12 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
9065, 89riotaeqbidv 7096 . . . . . . . . . . 11 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))) = (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))
9160, 90mpteq12dv 5115 . . . . . . . . . 10 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
9291eleq2d 2875 . . . . . . . . 9 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9359, 92syl5bb 286 . . . . . . . 8 ((𝑒 = 𝐸𝑢 = 𝑈𝑣 = 𝑉) → ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9434, 37, 42, 93syl3anc 1368 . . . . . . 7 ((𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9529, 30, 31, 94sbc3ie 3798 . . . . . 6 ([⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ / 𝑒][((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
9628, 95syl6bb 290 . . . . 5 (𝑤 = 𝑊 → ([⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩))))))
9796abbi1dv 2928 . . . 4 (𝑤 = 𝑊 → {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))} = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
98 eqid 2798 . . . 4 (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}) = (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})
9997, 98, 41mptfvmpt 6968 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊) = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
1006, 99sylan9eq 2853 . 2 ((𝐾𝐴𝑊𝐻) → 𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
1011, 100syl 17 1 (𝜑𝑆 = (𝑡𝑉 ↦ (𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑧⟩), 𝑡⟩)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2776  wral 3106  [wsbc 3720  cun 3879  {csn 4525  cop 4531  cotp 4533  cmpt 5110   I cid 5424  cres 5521  cfv 6324  crio 7092  Basecbs 16475  LSpanclspn 19736  LHypclh 37280  LTrncltrn 37397  DVecHcdvh 38374  LCDualclcd 38882  HVMapchvm 39052  HDMap1chdma1 39087  HDMapchdma 39088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-ot 4534  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-hdmap 39090
This theorem is referenced by:  hdmapval  39124  hdmapfnN  39125
  Copyright terms: Public domain W3C validator