Step | Hyp | Ref
| Expression |
1 | | hdmapfval.k |
. 2
⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) |
2 | | hdmapfval.s |
. . . 4
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
3 | | hdmapval.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
4 | 3 | hdmapffval 40692 |
. . . . 5
⊢ (𝐾 ∈ 𝐴 → (HDMap‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})) |
5 | 4 | fveq1d 6893 |
. . . 4
⊢ (𝐾 ∈ 𝐴 → ((HDMap‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊)) |
6 | 2, 5 | eqtrid 2784 |
. . 3
⊢ (𝐾 ∈ 𝐴 → 𝑆 = ((𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊)) |
7 | | fveq2 6891 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊)) |
8 | 7 | reseq2d 5981 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ( I ↾ ((LTrn‘𝐾)‘𝑤)) = ( I ↾ ((LTrn‘𝐾)‘𝑊))) |
9 | 8 | opeq2d 4880 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ⟨( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑤))⟩ = ⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))⟩) |
10 | | fveq2 6891 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊)) |
11 | | fveq2 6891 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → ((HDMap1‘𝐾)‘𝑤) = ((HDMap1‘𝐾)‘𝑊)) |
12 | | 2fveq3 6896 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑊 → (Base‘((LCDual‘𝐾)‘𝑤)) = (Base‘((LCDual‘𝐾)‘𝑊))) |
13 | | fveq2 6891 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑊 → ((HVMap‘𝐾)‘𝑤) = ((HVMap‘𝐾)‘𝑊)) |
14 | 13 | fveq1d 6893 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑊 → (((HVMap‘𝐾)‘𝑤)‘𝑒) = (((HVMap‘𝐾)‘𝑊)‘𝑒)) |
15 | 14 | oteq2d 4886 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑊 → ⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩ = ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩) |
16 | 15 | fveq2d 6895 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑊 → (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩) = (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩)) |
17 | 16 | oteq2d 4886 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑊 → ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) |
18 | 17 | fveq2d 6895 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑊 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) |
19 | 18 | eqeq2d 2743 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑊 → (𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))) |
20 | 19 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑊 → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) |
21 | 20 | ralbidv 3177 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑊 → (∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) |
22 | 12, 21 | riotaeqbidv 7367 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))) = (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) |
23 | 22 | mpteq2dv 5250 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))) |
24 | 23 | eleq2d 2819 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))) |
25 | 11, 24 | sbceqbid 3784 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ([((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔
[((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))) |
26 | 25 | sbcbidv 3836 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ([(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))) |
27 | 10, 26 | sbceqbid 3784 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))) |
28 | 9, 27 | sbceqbid 3784 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ([⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))⟩ / 𝑒][((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))) |
29 | | opex 5464 |
. . . . . . 7
⊢ ⟨( I
↾ (Base‘𝐾)), (
I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ V |
30 | | fvex 6904 |
. . . . . . 7
⊢
((DVecH‘𝐾)‘𝑊) ∈ V |
31 | | fvex 6904 |
. . . . . . 7
⊢
(Base‘𝑢)
∈ V |
32 | | simp1 1136 |
. . . . . . . . 9
⊢ ((𝑒 = ⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑒 = ⟨( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))⟩) |
33 | | hdmapfval.e |
. . . . . . . . 9
⊢ 𝐸 = ⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))⟩ |
34 | 32, 33 | eqtr4di 2790 |
. . . . . . . 8
⊢ ((𝑒 = ⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑒 = 𝐸) |
35 | | simp2 1137 |
. . . . . . . . 9
⊢ ((𝑒 = ⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = ((DVecH‘𝐾)‘𝑊)) |
36 | | hdmapfval.u |
. . . . . . . . 9
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
37 | 35, 36 | eqtr4di 2790 |
. . . . . . . 8
⊢ ((𝑒 = ⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = 𝑈) |
38 | | simp3 1138 |
. . . . . . . . . 10
⊢ ((𝑒 = ⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = (Base‘𝑢)) |
39 | 37 | fveq2d 6895 |
. . . . . . . . . 10
⊢ ((𝑒 = ⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → (Base‘𝑢) = (Base‘𝑈)) |
40 | 38, 39 | eqtrd 2772 |
. . . . . . . . 9
⊢ ((𝑒 = ⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = (Base‘𝑈)) |
41 | | hdmapfval.v |
. . . . . . . . 9
⊢ 𝑉 = (Base‘𝑈) |
42 | 40, 41 | eqtr4di 2790 |
. . . . . . . 8
⊢ ((𝑒 = ⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = 𝑉) |
43 | | fvex 6904 |
. . . . . . . . . 10
⊢
((HDMap1‘𝐾)‘𝑊) ∈ V |
44 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑖 = ((HDMap1‘𝐾)‘𝑊) → 𝑖 = ((HDMap1‘𝐾)‘𝑊)) |
45 | | hdmapfval.i |
. . . . . . . . . . . 12
⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
46 | 44, 45 | eqtr4di 2790 |
. . . . . . . . . . 11
⊢ (𝑖 = ((HDMap1‘𝐾)‘𝑊) → 𝑖 = 𝐼) |
47 | | fveq1 6890 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝐼 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) |
48 | | fveq1 6890 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝐼 → (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩) = (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩)) |
49 | 48 | oteq2d 4886 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝐼 → ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) |
50 | 49 | fveq2d 6895 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝐼 → (𝐼‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) |
51 | 47, 50 | eqtrd 2772 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝐼 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) |
52 | 51 | eqeq2d 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝐼 → (𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))) |
53 | 52 | imbi2d 340 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝐼 → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) |
54 | 53 | ralbidv 3177 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝐼 → (∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) |
55 | 54 | riotabidv 7366 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐼 → (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))) = (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) |
56 | 55 | mpteq2dv 5250 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))) |
57 | 56 | eleq2d 2819 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐼 → (𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))) |
58 | 46, 57 | syl 17 |
. . . . . . . . . 10
⊢ (𝑖 = ((HDMap1‘𝐾)‘𝑊) → (𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))))) |
59 | 43, 58 | sbcie 3820 |
. . . . . . . . 9
⊢
([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))))) |
60 | | simp3 1138 |
. . . . . . . . . . 11
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → 𝑣 = 𝑉) |
61 | | hdmapfval.d |
. . . . . . . . . . . . . 14
⊢ 𝐷 = (Base‘𝐶) |
62 | | hdmapfval.c |
. . . . . . . . . . . . . . 15
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
63 | 62 | fveq2i 6894 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐶) =
(Base‘((LCDual‘𝐾)‘𝑊)) |
64 | 61, 63 | eqtr2i 2761 |
. . . . . . . . . . . . 13
⊢
(Base‘((LCDual‘𝐾)‘𝑊)) = 𝐷 |
65 | 64 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (Base‘((LCDual‘𝐾)‘𝑊)) = 𝐷) |
66 | | simp2 1137 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → 𝑢 = 𝑈) |
67 | 66 | fveq2d 6895 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (LSpan‘𝑢) = (LSpan‘𝑈)) |
68 | | hdmapfval.n |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑁 = (LSpan‘𝑈) |
69 | 67, 68 | eqtr4di 2790 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (LSpan‘𝑢) = 𝑁) |
70 | | simp1 1136 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → 𝑒 = 𝐸) |
71 | 70 | sneqd 4640 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → {𝑒} = {𝐸}) |
72 | 69, 71 | fveq12d 6898 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ((LSpan‘𝑢)‘{𝑒}) = (𝑁‘{𝐸})) |
73 | 69 | fveq1d 6893 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ((LSpan‘𝑢)‘{𝑡}) = (𝑁‘{𝑡})) |
74 | 72, 73 | uneq12d 4164 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) = ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡}))) |
75 | 74 | eleq2d 2819 |
. . . . . . . . . . . . . . 15
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) ↔ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})))) |
76 | 75 | notbid 317 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) ↔ ¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})))) |
77 | 70 | oteq1d 4885 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩) |
78 | 70 | fveq2d 6895 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (((HVMap‘𝐾)‘𝑊)‘𝑒) = (((HVMap‘𝐾)‘𝑊)‘𝐸)) |
79 | | hdmapfval.j |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
80 | 79 | fveq1i 6892 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐽‘𝐸) = (((HVMap‘𝐾)‘𝑊)‘𝐸) |
81 | 78, 80 | eqtr4di 2790 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (((HVMap‘𝐾)‘𝑊)‘𝑒) = (𝐽‘𝐸)) |
82 | 81 | oteq2d 4886 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ⟨𝐸, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (𝐽‘𝐸), 𝑧⟩) |
83 | 77, 82 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩ = ⟨𝐸, (𝐽‘𝐸), 𝑧⟩) |
84 | 83 | fveq2d 6895 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩) = (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩)) |
85 | 84 | oteq2d 4886 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩) |
86 | 85 | fveq2d 6895 |
. . . . . . . . . . . . . . 15
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩)) |
87 | 86 | eqeq2d 2743 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩))) |
88 | 76, 87 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩)))) |
89 | 60, 88 | raleqbidv 3342 |
. . . . . . . . . . . 12
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩)))) |
90 | 65, 89 | riotaeqbidv 7367 |
. . . . . . . . . . 11
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩))) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩)))) |
91 | 60, 90 | mpteq12dv 5239 |
. . . . . . . . . 10
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩))))) |
92 | 91 | eleq2d 2819 |
. . . . . . . . 9
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩)))))) |
93 | 59, 92 | bitrid 282 |
. . . . . . . 8
⊢ ((𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩)))))) |
94 | 34, 37, 42, 93 | syl3anc 1371 |
. . . . . . 7
⊢ ((𝑒 = ⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))⟩ ∧ 𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢)) → ([((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩)))))) |
95 | 29, 30, 31, 94 | sbc3ie 3863 |
. . . . . 6
⊢
([⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ / 𝑒][((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑊) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑊))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑊)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩))))) |
96 | 28, 95 | bitrdi 286 |
. . . . 5
⊢ (𝑤 = 𝑊 → ([⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩)))))) |
97 | 96 | eqabcdv 2868 |
. . . 4
⊢ (𝑤 = 𝑊 → {𝑎 ∣ [⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))} = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩))))) |
98 | | eqid 2732 |
. . . 4
⊢ (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}) = (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}) |
99 | 97, 98, 41 | mptfvmpt 7229 |
. . 3
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [⟨( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})‘𝑊) = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩))))) |
100 | 6, 99 | sylan9eq 2792 |
. 2
⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝑆 = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩))))) |
101 | 1, 100 | syl 17 |
1
⊢ (𝜑 → 𝑆 = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝐸, (𝐽‘𝐸), 𝑧⟩), 𝑡⟩))))) |