Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapffval Structured version   Visualization version   GIF version

Theorem hdmapffval 41805
Description: Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.)
Hypothesis
Ref Expression
hdmapval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
hdmapffval (𝐾𝑋 → (HDMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}))
Distinct variable groups:   𝑤,𝐻   𝑒,𝑎,𝑖,𝑡,𝑢,𝑣,𝑤,𝑦,𝑧,𝐾
Allowed substitution hints:   𝐻(𝑦,𝑧,𝑣,𝑢,𝑡,𝑒,𝑖,𝑎)   𝑋(𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑒,𝑖,𝑎)

Proof of Theorem hdmapffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐾𝑋𝐾 ∈ V)
2 fveq2 6826 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 hdmapval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2782 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6826 . . . . . . . 8 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
65reseq2d 5934 . . . . . . 7 (𝑘 = 𝐾 → ( I ↾ (Base‘𝑘)) = ( I ↾ (Base‘𝐾)))
7 fveq2 6826 . . . . . . . . 9 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
87fveq1d 6828 . . . . . . . 8 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
98reseq2d 5934 . . . . . . 7 (𝑘 = 𝐾 → ( I ↾ ((LTrn‘𝑘)‘𝑤)) = ( I ↾ ((LTrn‘𝐾)‘𝑤)))
106, 9opeq12d 4835 . . . . . 6 (𝑘 = 𝐾 → ⟨( I ↾ (Base‘𝑘)), ( I ↾ ((LTrn‘𝑘)‘𝑤))⟩ = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩)
11 fveq2 6826 . . . . . . . 8 (𝑘 = 𝐾 → (DVecH‘𝑘) = (DVecH‘𝐾))
1211fveq1d 6828 . . . . . . 7 (𝑘 = 𝐾 → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑤))
13 fveq2 6826 . . . . . . . . . 10 (𝑘 = 𝐾 → (HDMap1‘𝑘) = (HDMap1‘𝐾))
1413fveq1d 6828 . . . . . . . . 9 (𝑘 = 𝐾 → ((HDMap1‘𝑘)‘𝑤) = ((HDMap1‘𝐾)‘𝑤))
15 fveq2 6826 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → (LCDual‘𝑘) = (LCDual‘𝐾))
1615fveq1d 6828 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → ((LCDual‘𝑘)‘𝑤) = ((LCDual‘𝐾)‘𝑤))
1716fveq2d 6830 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (Base‘((LCDual‘𝑘)‘𝑤)) = (Base‘((LCDual‘𝐾)‘𝑤)))
18 fveq2 6826 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝐾 → (HVMap‘𝑘) = (HVMap‘𝐾))
1918fveq1d 6828 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝐾 → ((HVMap‘𝑘)‘𝑤) = ((HVMap‘𝐾)‘𝑤))
2019fveq1d 6828 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐾 → (((HVMap‘𝑘)‘𝑤)‘𝑒) = (((HVMap‘𝐾)‘𝑤)‘𝑒))
2120oteq2d 4840 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐾 → ⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩ = ⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩)
2221fveq2d 6830 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐾 → (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩) = (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩))
2322oteq2d 4840 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐾 → ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩ = ⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)
2423fveq2d 6830 . . . . . . . . . . . . . . 15 (𝑘 = 𝐾 → (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩) = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))
2524eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → (𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩) ↔ 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))
2625imbi2d 340 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → ((¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))
2726ralbidv 3152 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)) ↔ ∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))
2817, 27riotaeqbidv 7313 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))) = (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))
2928mpteq2dv 5189 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) = (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))))
3029eleq2d 2814 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ 𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))))
3114, 30sbceqbid 3751 . . . . . . . 8 (𝑘 = 𝐾 → ([((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))))
3231sbcbidv 3800 . . . . . . 7 (𝑘 = 𝐾 → ([(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))))
3312, 32sbceqbid 3751 . . . . . 6 (𝑘 = 𝐾 → ([((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))))
3410, 33sbceqbid 3751 . . . . 5 (𝑘 = 𝐾 → ([⟨( I ↾ (Base‘𝑘)), ( I ↾ ((LTrn‘𝑘)‘𝑤))⟩ / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩)))) ↔ [⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))))
3534abbidv 2795 . . . 4 (𝑘 = 𝐾 → {𝑎[⟨( I ↾ (Base‘𝑘)), ( I ↾ ((LTrn‘𝑘)‘𝑤))⟩ / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))} = {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))})
364, 35mpteq12dv 5182 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎[⟨( I ↾ (Base‘𝑘)), ( I ↾ ((LTrn‘𝑘)‘𝑤))⟩ / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}) = (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}))
37 df-hdmap 41773 . . 3 HDMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎[⟨( I ↾ (Base‘𝑘)), ( I ↾ ((LTrn‘𝑘)‘𝑤))⟩ / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}))
3836, 37, 3mptfvmpt 7168 . 2 (𝐾 ∈ V → (HDMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}))
391, 38syl 17 1 (𝐾𝑋 → (HDMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))⟩ / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3438  [wsbc 3744  cun 3903  {csn 4579  cop 4585  cotp 4587  cmpt 5176   I cid 5517  cres 5625  cfv 6486  crio 7309  Basecbs 17138  LSpanclspn 20892  LHypclh 39963  LTrncltrn 40080  DVecHcdvh 41057  LCDualclcd 41565  HVMapchvm 41735  HDMap1chdma1 41770  HDMapchdma 41771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-ot 4588  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-hdmap 41773
This theorem is referenced by:  hdmapfval  41806
  Copyright terms: Public domain W3C validator