![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-hnorm | Structured version Visualization version GIF version |
Description: Define the function for the norm of a vector of Hilbert space. See normval 30812 for its value and normcl 30813 for its closure. Theorems norm-i-i 30821, norm-ii-i 30825, and norm-iii-i 30827 show it has the expected properties of a norm. In the literature, the norm of ๐ด is usually written "|| ๐ด ||", but we use function notation to take advantage of our existing theorems about functions. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-hnorm | โข normโ = (๐ฅ โ dom dom ยทih โฆ (โโ(๐ฅ ยทih ๐ฅ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cno 30611 | . 2 class normโ | |
2 | vx | . . 3 setvar ๐ฅ | |
3 | csp 30610 | . . . . 5 class ยทih | |
4 | 3 | cdm 5666 | . . . 4 class dom ยทih |
5 | 4 | cdm 5666 | . . 3 class dom dom ยทih |
6 | 2 | cv 1532 | . . . . 5 class ๐ฅ |
7 | 6, 6, 3 | co 7401 | . . . 4 class (๐ฅ ยทih ๐ฅ) |
8 | csqrt 15176 | . . . 4 class โ | |
9 | 7, 8 | cfv 6533 | . . 3 class (โโ(๐ฅ ยทih ๐ฅ)) |
10 | 2, 5, 9 | cmpt 5221 | . 2 class (๐ฅ โ dom dom ยทih โฆ (โโ(๐ฅ ยทih ๐ฅ))) |
11 | 1, 10 | wceq 1533 | 1 wff normโ = (๐ฅ โ dom dom ยทih โฆ (โโ(๐ฅ ยทih ๐ฅ))) |
Colors of variables: wff setvar class |
This definition is referenced by: dfhnorm2 30810 |
Copyright terms: Public domain | W3C validator |