HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normval Structured version   Visualization version   GIF version

Theorem normval 28896
Description: The value of the norm of a vector in Hilbert space. Definition of norm in [Beran] p. 96. In the literature, the norm of 𝐴 is usually written as "|| 𝐴 ||", but we use function value notation to take advantage of our existing theorems about functions. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
normval (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))

Proof of Theorem normval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq12 7147 . . . 4 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥 ·ih 𝑥) = (𝐴 ·ih 𝐴))
21anidms 570 . . 3 (𝑥 = 𝐴 → (𝑥 ·ih 𝑥) = (𝐴 ·ih 𝐴))
32fveq2d 6655 . 2 (𝑥 = 𝐴 → (√‘(𝑥 ·ih 𝑥)) = (√‘(𝐴 ·ih 𝐴)))
4 dfhnorm2 28894 . 2 norm = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥)))
5 fvex 6664 . 2 (√‘(𝐴 ·ih 𝐴)) ∈ V
63, 4, 5fvmpt 6749 1 (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  cfv 6336  (class class class)co 7138  csqrt 14581  chba 28691   ·ih csp 28694  normcno 28695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pr 5311  ax-hfi 28851
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fv 6344  df-ov 7141  df-hnorm 28740
This theorem is referenced by:  normge0  28898  normgt0  28899  norm0  28900  normsqi  28904  norm-ii-i  28909  norm-iii-i  28911  bcsiALT  28951
  Copyright terms: Public domain W3C validator