HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normval Structured version   Visualization version   GIF version

Theorem normval 30372
Description: The value of the norm of a vector in Hilbert space. Definition of norm in [Beran] p. 96. In the literature, the norm of ๐ด is usually written as "|| ๐ด ||", but we use function value notation to take advantage of our existing theorems about functions. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
normval (๐ด โˆˆ โ„‹ โ†’ (normโ„Žโ€˜๐ด) = (โˆšโ€˜(๐ด ยทih ๐ด)))

Proof of Theorem normval
Dummy variable ๐‘ฅ is distinct from all other variables.
StepHypRef Expression
1 oveq12 7417 . . . 4 ((๐‘ฅ = ๐ด โˆง ๐‘ฅ = ๐ด) โ†’ (๐‘ฅ ยทih ๐‘ฅ) = (๐ด ยทih ๐ด))
21anidms 567 . . 3 (๐‘ฅ = ๐ด โ†’ (๐‘ฅ ยทih ๐‘ฅ) = (๐ด ยทih ๐ด))
32fveq2d 6895 . 2 (๐‘ฅ = ๐ด โ†’ (โˆšโ€˜(๐‘ฅ ยทih ๐‘ฅ)) = (โˆšโ€˜(๐ด ยทih ๐ด)))
4 dfhnorm2 30370 . 2 normโ„Ž = (๐‘ฅ โˆˆ โ„‹ โ†ฆ (โˆšโ€˜(๐‘ฅ ยทih ๐‘ฅ)))
5 fvex 6904 . 2 (โˆšโ€˜(๐ด ยทih ๐ด)) โˆˆ V
63, 4, 5fvmpt 6998 1 (๐ด โˆˆ โ„‹ โ†’ (normโ„Žโ€˜๐ด) = (โˆšโ€˜(๐ด ยทih ๐ด)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1541   โˆˆ wcel 2106  โ€˜cfv 6543  (class class class)co 7408  โˆšcsqrt 15179   โ„‹chba 30167   ยทih csp 30170  normโ„Žcno 30171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-hfi 30327
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-hnorm 30216
This theorem is referenced by:  normge0  30374  normgt0  30375  norm0  30376  normsqi  30380  norm-ii-i  30385  norm-iii-i  30387  bcsiALT  30427
  Copyright terms: Public domain W3C validator