![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normval | Structured version Visualization version GIF version |
Description: The value of the norm of a vector in Hilbert space. Definition of norm in [Beran] p. 96. In the literature, the norm of ๐ด is usually written as "|| ๐ด ||", but we use function value notation to take advantage of our existing theorems about functions. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normval | โข (๐ด โ โ โ (normโโ๐ด) = (โโ(๐ด ยทih ๐ด))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7417 | . . . 4 โข ((๐ฅ = ๐ด โง ๐ฅ = ๐ด) โ (๐ฅ ยทih ๐ฅ) = (๐ด ยทih ๐ด)) | |
2 | 1 | anidms 567 | . . 3 โข (๐ฅ = ๐ด โ (๐ฅ ยทih ๐ฅ) = (๐ด ยทih ๐ด)) |
3 | 2 | fveq2d 6895 | . 2 โข (๐ฅ = ๐ด โ (โโ(๐ฅ ยทih ๐ฅ)) = (โโ(๐ด ยทih ๐ด))) |
4 | dfhnorm2 30370 | . 2 โข normโ = (๐ฅ โ โ โฆ (โโ(๐ฅ ยทih ๐ฅ))) | |
5 | fvex 6904 | . 2 โข (โโ(๐ด ยทih ๐ด)) โ V | |
6 | 3, 4, 5 | fvmpt 6998 | 1 โข (๐ด โ โ โ (normโโ๐ด) = (โโ(๐ด ยทih ๐ด))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 โcfv 6543 (class class class)co 7408 โcsqrt 15179 โchba 30167 ยทih csp 30170 normโcno 30171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-hfi 30327 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-hnorm 30216 |
This theorem is referenced by: normge0 30374 normgt0 30375 norm0 30376 normsqi 30380 norm-ii-i 30385 norm-iii-i 30387 bcsiALT 30427 |
Copyright terms: Public domain | W3C validator |