HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normval Structured version   Visualization version   GIF version

Theorem normval 31156
Description: The value of the norm of a vector in Hilbert space. Definition of norm in [Beran] p. 96. In the literature, the norm of 𝐴 is usually written as "|| 𝐴 ||", but we use function value notation to take advantage of our existing theorems about functions. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
normval (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))

Proof of Theorem normval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq12 7457 . . . 4 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥 ·ih 𝑥) = (𝐴 ·ih 𝐴))
21anidms 566 . . 3 (𝑥 = 𝐴 → (𝑥 ·ih 𝑥) = (𝐴 ·ih 𝐴))
32fveq2d 6924 . 2 (𝑥 = 𝐴 → (√‘(𝑥 ·ih 𝑥)) = (√‘(𝐴 ·ih 𝐴)))
4 dfhnorm2 31154 . 2 norm = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥)))
5 fvex 6933 . 2 (√‘(𝐴 ·ih 𝐴)) ∈ V
63, 4, 5fvmpt 7029 1 (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  csqrt 15282  chba 30951   ·ih csp 30954  normcno 30955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-hfi 31111
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-hnorm 31000
This theorem is referenced by:  normge0  31158  normgt0  31159  norm0  31160  normsqi  31164  norm-ii-i  31169  norm-iii-i  31171  bcsiALT  31211
  Copyright terms: Public domain W3C validator