HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normval Structured version   Visualization version   GIF version

Theorem normval 31102
Description: The value of the norm of a vector in Hilbert space. Definition of norm in [Beran] p. 96. In the literature, the norm of 𝐴 is usually written as "|| 𝐴 ||", but we use function value notation to take advantage of our existing theorems about functions. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
normval (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))

Proof of Theorem normval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq12 7355 . . . 4 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥 ·ih 𝑥) = (𝐴 ·ih 𝐴))
21anidms 566 . . 3 (𝑥 = 𝐴 → (𝑥 ·ih 𝑥) = (𝐴 ·ih 𝐴))
32fveq2d 6826 . 2 (𝑥 = 𝐴 → (√‘(𝑥 ·ih 𝑥)) = (√‘(𝐴 ·ih 𝐴)))
4 dfhnorm2 31100 . 2 norm = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥)))
5 fvex 6835 . 2 (√‘(𝐴 ·ih 𝐴)) ∈ V
63, 4, 5fvmpt 6929 1 (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  csqrt 15140  chba 30897   ·ih csp 30900  normcno 30901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-hfi 31057
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-hnorm 30946
This theorem is referenced by:  normge0  31104  normgt0  31105  norm0  31106  normsqi  31110  norm-ii-i  31115  norm-iii-i  31117  bcsiALT  31157
  Copyright terms: Public domain W3C validator