![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normval | Structured version Visualization version GIF version |
Description: The value of the norm of a vector in Hilbert space. Definition of norm in [Beran] p. 96. In the literature, the norm of 𝐴 is usually written as "|| 𝐴 ||", but we use function value notation to take advantage of our existing theorems about functions. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normval | ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7428 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥 ·ih 𝑥) = (𝐴 ·ih 𝐴)) | |
2 | 1 | anidms 565 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ·ih 𝑥) = (𝐴 ·ih 𝐴)) |
3 | 2 | fveq2d 6900 | . 2 ⊢ (𝑥 = 𝐴 → (√‘(𝑥 ·ih 𝑥)) = (√‘(𝐴 ·ih 𝐴))) |
4 | dfhnorm2 31004 | . 2 ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) | |
5 | fvex 6909 | . 2 ⊢ (√‘(𝐴 ·ih 𝐴)) ∈ V | |
6 | 3, 4, 5 | fvmpt 7004 | 1 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 √csqrt 15216 ℋchba 30801 ·ih csp 30804 normℎcno 30805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-hfi 30961 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-ov 7422 df-hnorm 30850 |
This theorem is referenced by: normge0 31008 normgt0 31009 norm0 31010 normsqi 31014 norm-ii-i 31019 norm-iii-i 31021 bcsiALT 31061 |
Copyright terms: Public domain | W3C validator |