HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dfhnorm2 Structured version   Visualization version   GIF version

Theorem dfhnorm2 31058
Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
dfhnorm2 norm = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥)))

Proof of Theorem dfhnorm2
StepHypRef Expression
1 df-hnorm 30904 . 2 norm = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥)))
2 ax-hfi 31015 . . . . . 6 ·ih :( ℋ × ℋ)⟶ℂ
32fdmi 6702 . . . . 5 dom ·ih = ( ℋ × ℋ)
43dmeqi 5871 . . . 4 dom dom ·ih = dom ( ℋ × ℋ)
5 dmxpid 5897 . . . 4 dom ( ℋ × ℋ) = ℋ
64, 5eqtr2i 2754 . . 3 ℋ = dom dom ·ih
76mpteq1i 5201 . 2 (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥)))
81, 7eqtr4i 2756 1 norm = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cmpt 5191   × cxp 5639  dom cdm 5641  cfv 6514  (class class class)co 7390  cc 11073  csqrt 15206  chba 30855   ·ih csp 30858  normcno 30859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-hfi 31015
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-dm 5651  df-fn 6517  df-f 6518  df-hnorm 30904
This theorem is referenced by:  normf  31059  normval  31060  hilnormi  31099
  Copyright terms: Public domain W3C validator