![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > dfhnorm2 | Structured version Visualization version GIF version |
Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfhnorm2 | β’ normβ = (π₯ β β β¦ (ββ(π₯ Β·ih π₯))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hnorm 30488 | . 2 β’ normβ = (π₯ β dom dom Β·ih β¦ (ββ(π₯ Β·ih π₯))) | |
2 | ax-hfi 30599 | . . . . . 6 β’ Β·ih :( β Γ β)βΆβ | |
3 | 2 | fdmi 6728 | . . . . 5 β’ dom Β·ih = ( β Γ β) |
4 | 3 | dmeqi 5903 | . . . 4 β’ dom dom Β·ih = dom ( β Γ β) |
5 | dmxpid 5928 | . . . 4 β’ dom ( β Γ β) = β | |
6 | 4, 5 | eqtr2i 2759 | . . 3 β’ β = dom dom Β·ih |
7 | 6 | mpteq1i 5243 | . 2 β’ (π₯ β β β¦ (ββ(π₯ Β·ih π₯))) = (π₯ β dom dom Β·ih β¦ (ββ(π₯ Β·ih π₯))) |
8 | 1, 7 | eqtr4i 2761 | 1 β’ normβ = (π₯ β β β¦ (ββ(π₯ Β·ih π₯))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 β¦ cmpt 5230 Γ cxp 5673 dom cdm 5675 βcfv 6542 (class class class)co 7411 βcc 11110 βcsqrt 15184 βchba 30439 Β·ih csp 30442 normβcno 30443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-hfi 30599 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-mpt 5231 df-xp 5681 df-dm 5685 df-fn 6545 df-f 6546 df-hnorm 30488 |
This theorem is referenced by: normf 30643 normval 30644 hilnormi 30683 |
Copyright terms: Public domain | W3C validator |