![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > dfhnorm2 | Structured version Visualization version GIF version |
Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfhnorm2 | ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hnorm 28411 | . 2 ⊢ normℎ = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) | |
2 | ax-hfi 28522 | . . . . . 6 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
3 | 2 | fdmi 6301 | . . . . 5 ⊢ dom ·ih = ( ℋ × ℋ) |
4 | 3 | dmeqi 5570 | . . . 4 ⊢ dom dom ·ih = dom ( ℋ × ℋ) |
5 | dmxpid 5590 | . . . 4 ⊢ dom ( ℋ × ℋ) = ℋ | |
6 | 4, 5 | eqtr2i 2802 | . . 3 ⊢ ℋ = dom dom ·ih |
7 | eqid 2777 | . . 3 ⊢ (√‘(𝑥 ·ih 𝑥)) = (√‘(𝑥 ·ih 𝑥)) | |
8 | 6, 7 | mpteq12i 4977 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) |
9 | 1, 8 | eqtr4i 2804 | 1 ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ↦ cmpt 4965 × cxp 5353 dom cdm 5355 ‘cfv 6135 (class class class)co 6922 ℂcc 10270 √csqrt 14380 ℋchba 28362 ·ih csp 28365 normℎcno 28366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-hfi 28522 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4887 df-opab 4949 df-mpt 4966 df-xp 5361 df-dm 5365 df-fn 6138 df-f 6139 df-hnorm 28411 |
This theorem is referenced by: normf 28566 normval 28567 hilnormi 28606 |
Copyright terms: Public domain | W3C validator |