HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dfhnorm2 Structured version   Visualization version   GIF version

Theorem dfhnorm2 30643
Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
dfhnorm2 normβ„Ž = (π‘₯ ∈ β„‹ ↦ (βˆšβ€˜(π‘₯ Β·ih π‘₯)))

Proof of Theorem dfhnorm2
StepHypRef Expression
1 df-hnorm 30489 . 2 normβ„Ž = (π‘₯ ∈ dom dom Β·ih ↦ (βˆšβ€˜(π‘₯ Β·ih π‘₯)))
2 ax-hfi 30600 . . . . . 6 Β·ih :( β„‹ Γ— β„‹)βŸΆβ„‚
32fdmi 6729 . . . . 5 dom Β·ih = ( β„‹ Γ— β„‹)
43dmeqi 5904 . . . 4 dom dom Β·ih = dom ( β„‹ Γ— β„‹)
5 dmxpid 5929 . . . 4 dom ( β„‹ Γ— β„‹) = β„‹
64, 5eqtr2i 2760 . . 3 β„‹ = dom dom Β·ih
76mpteq1i 5244 . 2 (π‘₯ ∈ β„‹ ↦ (βˆšβ€˜(π‘₯ Β·ih π‘₯))) = (π‘₯ ∈ dom dom Β·ih ↦ (βˆšβ€˜(π‘₯ Β·ih π‘₯)))
81, 7eqtr4i 2762 1 normβ„Ž = (π‘₯ ∈ β„‹ ↦ (βˆšβ€˜(π‘₯ Β·ih π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   ↦ cmpt 5231   Γ— cxp 5674  dom cdm 5676  β€˜cfv 6543  (class class class)co 7412  β„‚cc 11112  βˆšcsqrt 15185   β„‹chba 30440   Β·ih csp 30443  normβ„Žcno 30444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-hfi 30600
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5682  df-dm 5686  df-fn 6546  df-f 6547  df-hnorm 30489
This theorem is referenced by:  normf  30644  normval  30645  hilnormi  30684
  Copyright terms: Public domain W3C validator