HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dfhnorm2 Structured version   Visualization version   GIF version

Theorem dfhnorm2 31108
Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
dfhnorm2 norm = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥)))

Proof of Theorem dfhnorm2
StepHypRef Expression
1 df-hnorm 30954 . 2 norm = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥)))
2 ax-hfi 31065 . . . . . 6 ·ih :( ℋ × ℋ)⟶ℂ
32fdmi 6722 . . . . 5 dom ·ih = ( ℋ × ℋ)
43dmeqi 5889 . . . 4 dom dom ·ih = dom ( ℋ × ℋ)
5 dmxpid 5915 . . . 4 dom ( ℋ × ℋ) = ℋ
64, 5eqtr2i 2760 . . 3 ℋ = dom dom ·ih
76mpteq1i 5216 . 2 (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥)))
81, 7eqtr4i 2762 1 norm = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cmpt 5206   × cxp 5657  dom cdm 5659  cfv 6536  (class class class)co 7410  cc 11132  csqrt 15257  chba 30905   ·ih csp 30908  normcno 30909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-hfi 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-mpt 5207  df-xp 5665  df-dm 5669  df-fn 6539  df-f 6540  df-hnorm 30954
This theorem is referenced by:  normf  31109  normval  31110  hilnormi  31149
  Copyright terms: Public domain W3C validator