| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > dfhnorm2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfhnorm2 | ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hnorm 30954 | . 2 ⊢ normℎ = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) | |
| 2 | ax-hfi 31065 | . . . . . 6 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
| 3 | 2 | fdmi 6722 | . . . . 5 ⊢ dom ·ih = ( ℋ × ℋ) |
| 4 | 3 | dmeqi 5889 | . . . 4 ⊢ dom dom ·ih = dom ( ℋ × ℋ) |
| 5 | dmxpid 5915 | . . . 4 ⊢ dom ( ℋ × ℋ) = ℋ | |
| 6 | 4, 5 | eqtr2i 2760 | . . 3 ⊢ ℋ = dom dom ·ih |
| 7 | 6 | mpteq1i 5216 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) |
| 8 | 1, 7 | eqtr4i 2762 | 1 ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↦ cmpt 5206 × cxp 5657 dom cdm 5659 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 √csqrt 15257 ℋchba 30905 ·ih csp 30908 normℎcno 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-hfi 31065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-mpt 5207 df-xp 5665 df-dm 5669 df-fn 6539 df-f 6540 df-hnorm 30954 |
| This theorem is referenced by: normf 31109 normval 31110 hilnormi 31149 |
| Copyright terms: Public domain | W3C validator |