HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dfhnorm2 Structured version   Visualization version   GIF version

Theorem dfhnorm2 31066
Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
dfhnorm2 norm = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥)))

Proof of Theorem dfhnorm2
StepHypRef Expression
1 df-hnorm 30912 . 2 norm = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥)))
2 ax-hfi 31023 . . . . . 6 ·ih :( ℋ × ℋ)⟶ℂ
32fdmi 6663 . . . . 5 dom ·ih = ( ℋ × ℋ)
43dmeqi 5847 . . . 4 dom dom ·ih = dom ( ℋ × ℋ)
5 dmxpid 5872 . . . 4 dom ( ℋ × ℋ) = ℋ
64, 5eqtr2i 2753 . . 3 ℋ = dom dom ·ih
76mpteq1i 5183 . 2 (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥)))
81, 7eqtr4i 2755 1 norm = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cmpt 5173   × cxp 5617  dom cdm 5619  cfv 6482  (class class class)co 7349  cc 11007  csqrt 15140  chba 30863   ·ih csp 30866  normcno 30867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-hfi 31023
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-mpt 5174  df-xp 5625  df-dm 5629  df-fn 6485  df-f 6486  df-hnorm 30912
This theorem is referenced by:  normf  31067  normval  31068  hilnormi  31107
  Copyright terms: Public domain W3C validator