![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > dfhnorm2 | Structured version Visualization version GIF version |
Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfhnorm2 | β’ normβ = (π₯ β β β¦ (ββ(π₯ Β·ih π₯))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hnorm 30489 | . 2 β’ normβ = (π₯ β dom dom Β·ih β¦ (ββ(π₯ Β·ih π₯))) | |
2 | ax-hfi 30600 | . . . . . 6 β’ Β·ih :( β Γ β)βΆβ | |
3 | 2 | fdmi 6729 | . . . . 5 β’ dom Β·ih = ( β Γ β) |
4 | 3 | dmeqi 5904 | . . . 4 β’ dom dom Β·ih = dom ( β Γ β) |
5 | dmxpid 5929 | . . . 4 β’ dom ( β Γ β) = β | |
6 | 4, 5 | eqtr2i 2760 | . . 3 β’ β = dom dom Β·ih |
7 | 6 | mpteq1i 5244 | . 2 β’ (π₯ β β β¦ (ββ(π₯ Β·ih π₯))) = (π₯ β dom dom Β·ih β¦ (ββ(π₯ Β·ih π₯))) |
8 | 1, 7 | eqtr4i 2762 | 1 β’ normβ = (π₯ β β β¦ (ββ(π₯ Β·ih π₯))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 β¦ cmpt 5231 Γ cxp 5674 dom cdm 5676 βcfv 6543 (class class class)co 7412 βcc 11112 βcsqrt 15185 βchba 30440 Β·ih csp 30443 normβcno 30444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-hfi 30600 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5682 df-dm 5686 df-fn 6546 df-f 6547 df-hnorm 30489 |
This theorem is referenced by: normf 30644 normval 30645 hilnormi 30684 |
Copyright terms: Public domain | W3C validator |