Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > dfhnorm2 | Structured version Visualization version GIF version |
Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfhnorm2 | ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hnorm 29231 | . 2 ⊢ normℎ = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) | |
2 | ax-hfi 29342 | . . . . . 6 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
3 | 2 | fdmi 6596 | . . . . 5 ⊢ dom ·ih = ( ℋ × ℋ) |
4 | 3 | dmeqi 5802 | . . . 4 ⊢ dom dom ·ih = dom ( ℋ × ℋ) |
5 | dmxpid 5828 | . . . 4 ⊢ dom ( ℋ × ℋ) = ℋ | |
6 | 4, 5 | eqtr2i 2767 | . . 3 ⊢ ℋ = dom dom ·ih |
7 | 6 | mpteq1i 5166 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) |
8 | 1, 7 | eqtr4i 2769 | 1 ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ↦ cmpt 5153 × cxp 5578 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 √csqrt 14872 ℋchba 29182 ·ih csp 29185 normℎcno 29186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-hfi 29342 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-dm 5590 df-fn 6421 df-f 6422 df-hnorm 29231 |
This theorem is referenced by: normf 29386 normval 29387 hilnormi 29426 |
Copyright terms: Public domain | W3C validator |