| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > dfhnorm2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfhnorm2 | ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hnorm 30897 | . 2 ⊢ normℎ = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) | |
| 2 | ax-hfi 31008 | . . . . . 6 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
| 3 | 2 | fdmi 6699 | . . . . 5 ⊢ dom ·ih = ( ℋ × ℋ) |
| 4 | 3 | dmeqi 5868 | . . . 4 ⊢ dom dom ·ih = dom ( ℋ × ℋ) |
| 5 | dmxpid 5894 | . . . 4 ⊢ dom ( ℋ × ℋ) = ℋ | |
| 6 | 4, 5 | eqtr2i 2753 | . . 3 ⊢ ℋ = dom dom ·ih |
| 7 | 6 | mpteq1i 5198 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) |
| 8 | 1, 7 | eqtr4i 2755 | 1 ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↦ cmpt 5188 × cxp 5636 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 √csqrt 15199 ℋchba 30848 ·ih csp 30851 normℎcno 30852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-hfi 31008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-dm 5648 df-fn 6514 df-f 6515 df-hnorm 30897 |
| This theorem is referenced by: normf 31052 normval 31053 hilnormi 31092 |
| Copyright terms: Public domain | W3C validator |