HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dfhnorm2 Structured version   Visualization version   GIF version

Theorem dfhnorm2 30642
Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
dfhnorm2 normβ„Ž = (π‘₯ ∈ β„‹ ↦ (βˆšβ€˜(π‘₯ Β·ih π‘₯)))

Proof of Theorem dfhnorm2
StepHypRef Expression
1 df-hnorm 30488 . 2 normβ„Ž = (π‘₯ ∈ dom dom Β·ih ↦ (βˆšβ€˜(π‘₯ Β·ih π‘₯)))
2 ax-hfi 30599 . . . . . 6 Β·ih :( β„‹ Γ— β„‹)βŸΆβ„‚
32fdmi 6728 . . . . 5 dom Β·ih = ( β„‹ Γ— β„‹)
43dmeqi 5903 . . . 4 dom dom Β·ih = dom ( β„‹ Γ— β„‹)
5 dmxpid 5928 . . . 4 dom ( β„‹ Γ— β„‹) = β„‹
64, 5eqtr2i 2759 . . 3 β„‹ = dom dom Β·ih
76mpteq1i 5243 . 2 (π‘₯ ∈ β„‹ ↦ (βˆšβ€˜(π‘₯ Β·ih π‘₯))) = (π‘₯ ∈ dom dom Β·ih ↦ (βˆšβ€˜(π‘₯ Β·ih π‘₯)))
81, 7eqtr4i 2761 1 normβ„Ž = (π‘₯ ∈ β„‹ ↦ (βˆšβ€˜(π‘₯ Β·ih π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   ↦ cmpt 5230   Γ— cxp 5673  dom cdm 5675  β€˜cfv 6542  (class class class)co 7411  β„‚cc 11110  βˆšcsqrt 15184   β„‹chba 30439   Β·ih csp 30442  normβ„Žcno 30443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-hfi 30599
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-mpt 5231  df-xp 5681  df-dm 5685  df-fn 6545  df-f 6546  df-hnorm 30488
This theorem is referenced by:  normf  30643  normval  30644  hilnormi  30683
  Copyright terms: Public domain W3C validator