| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > dfhnorm2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfhnorm2 | ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hnorm 30904 | . 2 ⊢ normℎ = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) | |
| 2 | ax-hfi 31015 | . . . . . 6 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
| 3 | 2 | fdmi 6702 | . . . . 5 ⊢ dom ·ih = ( ℋ × ℋ) |
| 4 | 3 | dmeqi 5871 | . . . 4 ⊢ dom dom ·ih = dom ( ℋ × ℋ) |
| 5 | dmxpid 5897 | . . . 4 ⊢ dom ( ℋ × ℋ) = ℋ | |
| 6 | 4, 5 | eqtr2i 2754 | . . 3 ⊢ ℋ = dom dom ·ih |
| 7 | 6 | mpteq1i 5201 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) |
| 8 | 1, 7 | eqtr4i 2756 | 1 ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↦ cmpt 5191 × cxp 5639 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 √csqrt 15206 ℋchba 30855 ·ih csp 30858 normℎcno 30859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-hfi 31015 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-dm 5651 df-fn 6517 df-f 6518 df-hnorm 30904 |
| This theorem is referenced by: normf 31059 normval 31060 hilnormi 31099 |
| Copyright terms: Public domain | W3C validator |