![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > dfhnorm2 | Structured version Visualization version GIF version |
Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfhnorm2 | ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hnorm 30997 | . 2 ⊢ normℎ = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) | |
2 | ax-hfi 31108 | . . . . . 6 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
3 | 2 | fdmi 6748 | . . . . 5 ⊢ dom ·ih = ( ℋ × ℋ) |
4 | 3 | dmeqi 5918 | . . . 4 ⊢ dom dom ·ih = dom ( ℋ × ℋ) |
5 | dmxpid 5944 | . . . 4 ⊢ dom ( ℋ × ℋ) = ℋ | |
6 | 4, 5 | eqtr2i 2764 | . . 3 ⊢ ℋ = dom dom ·ih |
7 | 6 | mpteq1i 5244 | . 2 ⊢ (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) |
8 | 1, 7 | eqtr4i 2766 | 1 ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ↦ cmpt 5231 × cxp 5687 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 √csqrt 15269 ℋchba 30948 ·ih csp 30951 normℎcno 30952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-hfi 31108 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5695 df-dm 5699 df-fn 6566 df-f 6567 df-hnorm 30997 |
This theorem is referenced by: normf 31152 normval 31153 hilnormi 31192 |
Copyright terms: Public domain | W3C validator |