| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version | ||
| Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30943). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31111. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-hba | ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chba 30863 | . 2 class ℋ | |
| 2 | cva 30864 | . . . . 5 class +ℎ | |
| 3 | csm 30865 | . . . . 5 class ·ℎ | |
| 4 | 2, 3 | cop 4583 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
| 5 | cno 30867 | . . . 4 class normℎ | |
| 6 | 4, 5 | cop 4583 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| 7 | cba 30530 | . . 3 class BaseSet | |
| 8 | 6, 7 | cfv 6482 | . 2 class (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 9 | 1, 8 | wceq 1540 | 1 wff ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: axhilex-zf 30925 axhfvadd-zf 30926 axhvcom-zf 30927 axhvass-zf 30928 axhv0cl-zf 30929 axhvaddid-zf 30930 axhfvmul-zf 30931 axhvmulid-zf 30932 axhvmulass-zf 30933 axhvdistr1-zf 30934 axhvdistr2-zf 30935 axhvmul0-zf 30936 axhfi-zf 30937 axhis1-zf 30938 axhis2-zf 30939 axhis3-zf 30940 axhis4-zf 30941 axhcompl-zf 30942 bcsiHIL 31124 hlimadd 31137 hhssabloilem 31205 pjhthlem2 31336 nmopsetretHIL 31808 nmopub2tHIL 31854 hmopbdoptHIL 31932 |
| Copyright terms: Public domain | W3C validator |