| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version | ||
| Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30935). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31103. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-hba | ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chba 30855 | . 2 class ℋ | |
| 2 | cva 30856 | . . . . 5 class +ℎ | |
| 3 | csm 30857 | . . . . 5 class ·ℎ | |
| 4 | 2, 3 | cop 4598 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
| 5 | cno 30859 | . . . 4 class normℎ | |
| 6 | 4, 5 | cop 4598 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| 7 | cba 30522 | . . 3 class BaseSet | |
| 8 | 6, 7 | cfv 6514 | . 2 class (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 9 | 1, 8 | wceq 1540 | 1 wff ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: axhilex-zf 30917 axhfvadd-zf 30918 axhvcom-zf 30919 axhvass-zf 30920 axhv0cl-zf 30921 axhvaddid-zf 30922 axhfvmul-zf 30923 axhvmulid-zf 30924 axhvmulass-zf 30925 axhvdistr1-zf 30926 axhvdistr2-zf 30927 axhvmul0-zf 30928 axhfi-zf 30929 axhis1-zf 30930 axhis2-zf 30931 axhis3-zf 30932 axhis4-zf 30933 axhcompl-zf 30934 bcsiHIL 31116 hlimadd 31129 hhssabloilem 31197 pjhthlem2 31328 nmopsetretHIL 31800 nmopub2tHIL 31846 hmopbdoptHIL 31924 |
| Copyright terms: Public domain | W3C validator |