| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version | ||
| Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30928). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31096. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-hba | ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chba 30848 | . 2 class ℋ | |
| 2 | cva 30849 | . . . . 5 class +ℎ | |
| 3 | csm 30850 | . . . . 5 class ·ℎ | |
| 4 | 2, 3 | cop 4595 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
| 5 | cno 30852 | . . . 4 class normℎ | |
| 6 | 4, 5 | cop 4595 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| 7 | cba 30515 | . . 3 class BaseSet | |
| 8 | 6, 7 | cfv 6511 | . 2 class (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 9 | 1, 8 | wceq 1540 | 1 wff ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: axhilex-zf 30910 axhfvadd-zf 30911 axhvcom-zf 30912 axhvass-zf 30913 axhv0cl-zf 30914 axhvaddid-zf 30915 axhfvmul-zf 30916 axhvmulid-zf 30917 axhvmulass-zf 30918 axhvdistr1-zf 30919 axhvdistr2-zf 30920 axhvmul0-zf 30921 axhfi-zf 30922 axhis1-zf 30923 axhis2-zf 30924 axhis3-zf 30925 axhis4-zf 30926 axhcompl-zf 30927 bcsiHIL 31109 hlimadd 31122 hhssabloilem 31190 pjhthlem2 31321 nmopsetretHIL 31793 nmopub2tHIL 31839 hmopbdoptHIL 31917 |
| Copyright terms: Public domain | W3C validator |