![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version |
Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 31027). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31195. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-hba | ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chba 30947 | . 2 class ℋ | |
2 | cva 30948 | . . . . 5 class +ℎ | |
3 | csm 30949 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4636 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
5 | cno 30951 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4636 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
7 | cba 30614 | . . 3 class BaseSet | |
8 | 6, 7 | cfv 6562 | . 2 class (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
9 | 1, 8 | wceq 1536 | 1 wff ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Colors of variables: wff setvar class |
This definition is referenced by: axhilex-zf 31009 axhfvadd-zf 31010 axhvcom-zf 31011 axhvass-zf 31012 axhv0cl-zf 31013 axhvaddid-zf 31014 axhfvmul-zf 31015 axhvmulid-zf 31016 axhvmulass-zf 31017 axhvdistr1-zf 31018 axhvdistr2-zf 31019 axhvmul0-zf 31020 axhfi-zf 31021 axhis1-zf 31022 axhis2-zf 31023 axhis3-zf 31024 axhis4-zf 31025 axhcompl-zf 31026 bcsiHIL 31208 hlimadd 31221 hhssabloilem 31289 pjhthlem2 31420 nmopsetretHIL 31892 nmopub2tHIL 31938 hmopbdoptHIL 32016 |
Copyright terms: Public domain | W3C validator |