Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version |
Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 29262). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 29430. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-hba | ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chba 29182 | . 2 class ℋ | |
2 | cva 29183 | . . . . 5 class +ℎ | |
3 | csm 29184 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4564 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
5 | cno 29186 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4564 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
7 | cba 28849 | . . 3 class BaseSet | |
8 | 6, 7 | cfv 6418 | . 2 class (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
9 | 1, 8 | wceq 1539 | 1 wff ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Colors of variables: wff setvar class |
This definition is referenced by: axhilex-zf 29244 axhfvadd-zf 29245 axhvcom-zf 29246 axhvass-zf 29247 axhv0cl-zf 29248 axhvaddid-zf 29249 axhfvmul-zf 29250 axhvmulid-zf 29251 axhvmulass-zf 29252 axhvdistr1-zf 29253 axhvdistr2-zf 29254 axhvmul0-zf 29255 axhfi-zf 29256 axhis1-zf 29257 axhis2-zf 29258 axhis3-zf 29259 axhis4-zf 29260 axhcompl-zf 29261 bcsiHIL 29443 hlimadd 29456 hhssabloilem 29524 pjhthlem2 29655 nmopsetretHIL 30127 nmopub2tHIL 30173 hmopbdoptHIL 30251 |
Copyright terms: Public domain | W3C validator |