HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-hba Structured version   Visualization version   GIF version

Definition df-hba 30871
Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30901). Note that is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31069. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-hba ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-hba
StepHypRef Expression
1 chba 30821 . 2 class
2 cva 30822 . . . . 5 class +
3 csm 30823 . . . . 5 class ·
42, 3cop 4591 . . . 4 class ⟨ + , ·
5 cno 30825 . . . 4 class norm
64, 5cop 4591 . . 3 class ⟨⟨ + , · ⟩, norm
7 cba 30488 . . 3 class BaseSet
86, 7cfv 6499 . 2 class (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1540 1 wff ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhilex-zf  30883  axhfvadd-zf  30884  axhvcom-zf  30885  axhvass-zf  30886  axhv0cl-zf  30887  axhvaddid-zf  30888  axhfvmul-zf  30889  axhvmulid-zf  30890  axhvmulass-zf  30891  axhvdistr1-zf  30892  axhvdistr2-zf  30893  axhvmul0-zf  30894  axhfi-zf  30895  axhis1-zf  30896  axhis2-zf  30897  axhis3-zf  30898  axhis4-zf  30899  axhcompl-zf  30900  bcsiHIL  31082  hlimadd  31095  hhssabloilem  31163  pjhthlem2  31294  nmopsetretHIL  31766  nmopub2tHIL  31812  hmopbdoptHIL  31890
  Copyright terms: Public domain W3C validator