| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version | ||
| Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30901). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31069. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-hba | ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chba 30821 | . 2 class ℋ | |
| 2 | cva 30822 | . . . . 5 class +ℎ | |
| 3 | csm 30823 | . . . . 5 class ·ℎ | |
| 4 | 2, 3 | cop 4591 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
| 5 | cno 30825 | . . . 4 class normℎ | |
| 6 | 4, 5 | cop 4591 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| 7 | cba 30488 | . . 3 class BaseSet | |
| 8 | 6, 7 | cfv 6499 | . 2 class (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 9 | 1, 8 | wceq 1540 | 1 wff ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: axhilex-zf 30883 axhfvadd-zf 30884 axhvcom-zf 30885 axhvass-zf 30886 axhv0cl-zf 30887 axhvaddid-zf 30888 axhfvmul-zf 30889 axhvmulid-zf 30890 axhvmulass-zf 30891 axhvdistr1-zf 30892 axhvdistr2-zf 30893 axhvmul0-zf 30894 axhfi-zf 30895 axhis1-zf 30896 axhis2-zf 30897 axhis3-zf 30898 axhis4-zf 30899 axhcompl-zf 30900 bcsiHIL 31082 hlimadd 31095 hhssabloilem 31163 pjhthlem2 31294 nmopsetretHIL 31766 nmopub2tHIL 31812 hmopbdoptHIL 31890 |
| Copyright terms: Public domain | W3C validator |