HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-hba Structured version   Visualization version   GIF version

Definition df-hba 30898
Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30928). Note that is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31096. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-hba ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-hba
StepHypRef Expression
1 chba 30848 . 2 class
2 cva 30849 . . . . 5 class +
3 csm 30850 . . . . 5 class ·
42, 3cop 4595 . . . 4 class ⟨ + , ·
5 cno 30852 . . . 4 class norm
64, 5cop 4595 . . 3 class ⟨⟨ + , · ⟩, norm
7 cba 30515 . . 3 class BaseSet
86, 7cfv 6511 . 2 class (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1540 1 wff ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhilex-zf  30910  axhfvadd-zf  30911  axhvcom-zf  30912  axhvass-zf  30913  axhv0cl-zf  30914  axhvaddid-zf  30915  axhfvmul-zf  30916  axhvmulid-zf  30917  axhvmulass-zf  30918  axhvdistr1-zf  30919  axhvdistr2-zf  30920  axhvmul0-zf  30921  axhfi-zf  30922  axhis1-zf  30923  axhis2-zf  30924  axhis3-zf  30925  axhis4-zf  30926  axhcompl-zf  30927  bcsiHIL  31109  hlimadd  31122  hhssabloilem  31190  pjhthlem2  31321  nmopsetretHIL  31793  nmopub2tHIL  31839  hmopbdoptHIL  31917
  Copyright terms: Public domain W3C validator