HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-hba Structured version   Visualization version   GIF version

Definition df-hba 30948
Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30978). Note that is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31146. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-hba ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-hba
StepHypRef Expression
1 chba 30898 . 2 class
2 cva 30899 . . . . 5 class +
3 csm 30900 . . . . 5 class ·
42, 3cop 4591 . . . 4 class ⟨ + , ·
5 cno 30902 . . . 4 class norm
64, 5cop 4591 . . 3 class ⟨⟨ + , · ⟩, norm
7 cba 30565 . . 3 class BaseSet
86, 7cfv 6499 . 2 class (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1540 1 wff ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhilex-zf  30960  axhfvadd-zf  30961  axhvcom-zf  30962  axhvass-zf  30963  axhv0cl-zf  30964  axhvaddid-zf  30965  axhfvmul-zf  30966  axhvmulid-zf  30967  axhvmulass-zf  30968  axhvdistr1-zf  30969  axhvdistr2-zf  30970  axhvmul0-zf  30971  axhfi-zf  30972  axhis1-zf  30973  axhis2-zf  30974  axhis3-zf  30975  axhis4-zf  30976  axhcompl-zf  30977  bcsiHIL  31159  hlimadd  31172  hhssabloilem  31240  pjhthlem2  31371  nmopsetretHIL  31843  nmopub2tHIL  31889  hmopbdoptHIL  31967
  Copyright terms: Public domain W3C validator