![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version |
Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30252). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 30420. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-hba | ⊢ ℋ = (BaseSet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chba 30172 | . 2 class ℋ | |
2 | cva 30173 | . . . . 5 class +ℎ | |
3 | csm 30174 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4635 | . . . 4 class ⟨ +ℎ , ·ℎ ⟩ |
5 | cno 30176 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4635 | . . 3 class ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ |
7 | cba 29839 | . . 3 class BaseSet | |
8 | 6, 7 | cfv 6544 | . 2 class (BaseSet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
9 | 1, 8 | wceq 1542 | 1 wff ℋ = (BaseSet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
Colors of variables: wff setvar class |
This definition is referenced by: axhilex-zf 30234 axhfvadd-zf 30235 axhvcom-zf 30236 axhvass-zf 30237 axhv0cl-zf 30238 axhvaddid-zf 30239 axhfvmul-zf 30240 axhvmulid-zf 30241 axhvmulass-zf 30242 axhvdistr1-zf 30243 axhvdistr2-zf 30244 axhvmul0-zf 30245 axhfi-zf 30246 axhis1-zf 30247 axhis2-zf 30248 axhis3-zf 30249 axhis4-zf 30250 axhcompl-zf 30251 bcsiHIL 30433 hlimadd 30446 hhssabloilem 30514 pjhthlem2 30645 nmopsetretHIL 31117 nmopub2tHIL 31163 hmopbdoptHIL 31241 |
Copyright terms: Public domain | W3C validator |