Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version |
Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 29370). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 29538. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-hba | ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chba 29290 | . 2 class ℋ | |
2 | cva 29291 | . . . . 5 class +ℎ | |
3 | csm 29292 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4568 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
5 | cno 29294 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4568 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
7 | cba 28957 | . . 3 class BaseSet | |
8 | 6, 7 | cfv 6437 | . 2 class (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
9 | 1, 8 | wceq 1539 | 1 wff ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Colors of variables: wff setvar class |
This definition is referenced by: axhilex-zf 29352 axhfvadd-zf 29353 axhvcom-zf 29354 axhvass-zf 29355 axhv0cl-zf 29356 axhvaddid-zf 29357 axhfvmul-zf 29358 axhvmulid-zf 29359 axhvmulass-zf 29360 axhvdistr1-zf 29361 axhvdistr2-zf 29362 axhvmul0-zf 29363 axhfi-zf 29364 axhis1-zf 29365 axhis2-zf 29366 axhis3-zf 29367 axhis4-zf 29368 axhcompl-zf 29369 bcsiHIL 29551 hlimadd 29564 hhssabloilem 29632 pjhthlem2 29763 nmopsetretHIL 30235 nmopub2tHIL 30281 hmopbdoptHIL 30359 |
Copyright terms: Public domain | W3C validator |