HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-hba Structured version   Visualization version   GIF version

Definition df-hba 30905
Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30935). Note that is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31103. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-hba ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)

Detailed syntax breakdown of Definition df-hba
StepHypRef Expression
1 chba 30855 . 2 class
2 cva 30856 . . . . 5 class +
3 csm 30857 . . . . 5 class ·
42, 3cop 4598 . . . 4 class ⟨ + , ·
5 cno 30859 . . . 4 class norm
64, 5cop 4598 . . 3 class ⟨⟨ + , · ⟩, norm
7 cba 30522 . . 3 class BaseSet
86, 7cfv 6514 . 2 class (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
91, 8wceq 1540 1 wff ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
Colors of variables: wff setvar class
This definition is referenced by:  axhilex-zf  30917  axhfvadd-zf  30918  axhvcom-zf  30919  axhvass-zf  30920  axhv0cl-zf  30921  axhvaddid-zf  30922  axhfvmul-zf  30923  axhvmulid-zf  30924  axhvmulass-zf  30925  axhvdistr1-zf  30926  axhvdistr2-zf  30927  axhvmul0-zf  30928  axhfi-zf  30929  axhis1-zf  30930  axhis2-zf  30931  axhis3-zf  30932  axhis4-zf  30933  axhcompl-zf  30934  bcsiHIL  31116  hlimadd  31129  hhssabloilem  31197  pjhthlem2  31328  nmopsetretHIL  31800  nmopub2tHIL  31846  hmopbdoptHIL  31924
  Copyright terms: Public domain W3C validator