![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version |
Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 31031). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31199. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-hba | ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chba 30951 | . 2 class ℋ | |
2 | cva 30952 | . . . . 5 class +ℎ | |
3 | csm 30953 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4654 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
5 | cno 30955 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4654 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
7 | cba 30618 | . . 3 class BaseSet | |
8 | 6, 7 | cfv 6573 | . 2 class (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
9 | 1, 8 | wceq 1537 | 1 wff ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Colors of variables: wff setvar class |
This definition is referenced by: axhilex-zf 31013 axhfvadd-zf 31014 axhvcom-zf 31015 axhvass-zf 31016 axhv0cl-zf 31017 axhvaddid-zf 31018 axhfvmul-zf 31019 axhvmulid-zf 31020 axhvmulass-zf 31021 axhvdistr1-zf 31022 axhvdistr2-zf 31023 axhvmul0-zf 31024 axhfi-zf 31025 axhis1-zf 31026 axhis2-zf 31027 axhis3-zf 31028 axhis4-zf 31029 axhcompl-zf 31030 bcsiHIL 31212 hlimadd 31225 hhssabloilem 31293 pjhthlem2 31424 nmopsetretHIL 31896 nmopub2tHIL 31942 hmopbdoptHIL 32020 |
Copyright terms: Public domain | W3C validator |