| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version | ||
| Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30979). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31147. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-hba | ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chba 30899 | . 2 class ℋ | |
| 2 | cva 30900 | . . . . 5 class +ℎ | |
| 3 | csm 30901 | . . . . 5 class ·ℎ | |
| 4 | 2, 3 | cop 4579 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
| 5 | cno 30903 | . . . 4 class normℎ | |
| 6 | 4, 5 | cop 4579 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| 7 | cba 30566 | . . 3 class BaseSet | |
| 8 | 6, 7 | cfv 6481 | . 2 class (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 9 | 1, 8 | wceq 1541 | 1 wff ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: axhilex-zf 30961 axhfvadd-zf 30962 axhvcom-zf 30963 axhvass-zf 30964 axhv0cl-zf 30965 axhvaddid-zf 30966 axhfvmul-zf 30967 axhvmulid-zf 30968 axhvmulass-zf 30969 axhvdistr1-zf 30970 axhvdistr2-zf 30971 axhvmul0-zf 30972 axhfi-zf 30973 axhis1-zf 30974 axhis2-zf 30975 axhis3-zf 30976 axhis4-zf 30977 axhcompl-zf 30978 bcsiHIL 31160 hlimadd 31173 hhssabloilem 31241 pjhthlem2 31372 nmopsetretHIL 31844 nmopub2tHIL 31890 hmopbdoptHIL 31968 |
| Copyright terms: Public domain | W3C validator |