| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version | ||
| Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30978). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31146. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-hba | ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chba 30898 | . 2 class ℋ | |
| 2 | cva 30899 | . . . . 5 class +ℎ | |
| 3 | csm 30900 | . . . . 5 class ·ℎ | |
| 4 | 2, 3 | cop 4591 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
| 5 | cno 30902 | . . . 4 class normℎ | |
| 6 | 4, 5 | cop 4591 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| 7 | cba 30565 | . . 3 class BaseSet | |
| 8 | 6, 7 | cfv 6499 | . 2 class (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 9 | 1, 8 | wceq 1540 | 1 wff ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: axhilex-zf 30960 axhfvadd-zf 30961 axhvcom-zf 30962 axhvass-zf 30963 axhv0cl-zf 30964 axhvaddid-zf 30965 axhfvmul-zf 30966 axhvmulid-zf 30967 axhvmulass-zf 30968 axhvdistr1-zf 30969 axhvdistr2-zf 30970 axhvmul0-zf 30971 axhfi-zf 30972 axhis1-zf 30973 axhis2-zf 30974 axhis3-zf 30975 axhis4-zf 30976 axhcompl-zf 30977 bcsiHIL 31159 hlimadd 31172 hhssabloilem 31240 pjhthlem2 31371 nmopsetretHIL 31843 nmopub2tHIL 31889 hmopbdoptHIL 31967 |
| Copyright terms: Public domain | W3C validator |