| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version | ||
| Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30926). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31094. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-hba | ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chba 30846 | . 2 class ℋ | |
| 2 | cva 30847 | . . . . 5 class +ℎ | |
| 3 | csm 30848 | . . . . 5 class ·ℎ | |
| 4 | 2, 3 | cop 4607 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
| 5 | cno 30850 | . . . 4 class normℎ | |
| 6 | 4, 5 | cop 4607 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| 7 | cba 30513 | . . 3 class BaseSet | |
| 8 | 6, 7 | cfv 6530 | . 2 class (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 9 | 1, 8 | wceq 1540 | 1 wff ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: axhilex-zf 30908 axhfvadd-zf 30909 axhvcom-zf 30910 axhvass-zf 30911 axhv0cl-zf 30912 axhvaddid-zf 30913 axhfvmul-zf 30914 axhvmulid-zf 30915 axhvmulass-zf 30916 axhvdistr1-zf 30917 axhvdistr2-zf 30918 axhvmul0-zf 30919 axhfi-zf 30920 axhis1-zf 30921 axhis2-zf 30922 axhis3-zf 30923 axhis4-zf 30924 axhcompl-zf 30925 bcsiHIL 31107 hlimadd 31120 hhssabloilem 31188 pjhthlem2 31319 nmopsetretHIL 31791 nmopub2tHIL 31837 hmopbdoptHIL 31915 |
| Copyright terms: Public domain | W3C validator |