![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version |
Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 30283). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 30451. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-hba | ⊢ ℋ = (BaseSet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chba 30203 | . 2 class ℋ | |
2 | cva 30204 | . . . . 5 class +ℎ | |
3 | csm 30205 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4635 | . . . 4 class ⟨ +ℎ , ·ℎ ⟩ |
5 | cno 30207 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4635 | . . 3 class ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ |
7 | cba 29870 | . . 3 class BaseSet | |
8 | 6, 7 | cfv 6544 | . 2 class (BaseSet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
9 | 1, 8 | wceq 1542 | 1 wff ℋ = (BaseSet‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
Colors of variables: wff setvar class |
This definition is referenced by: axhilex-zf 30265 axhfvadd-zf 30266 axhvcom-zf 30267 axhvass-zf 30268 axhv0cl-zf 30269 axhvaddid-zf 30270 axhfvmul-zf 30271 axhvmulid-zf 30272 axhvmulass-zf 30273 axhvdistr1-zf 30274 axhvdistr2-zf 30275 axhvmul0-zf 30276 axhfi-zf 30277 axhis1-zf 30278 axhis2-zf 30279 axhis3-zf 30280 axhis4-zf 30281 axhcompl-zf 30282 bcsiHIL 30464 hlimadd 30477 hhssabloilem 30545 pjhthlem2 30676 nmopsetretHIL 31148 nmopub2tHIL 31194 hmopbdoptHIL 31272 |
Copyright terms: Public domain | W3C validator |