| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > norm-iii-i | Structured version Visualization version GIF version | ||
| Description: Theorem 3.3(iii) of [Beran] p. 97. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| norm-iii.1 | ⊢ 𝐴 ∈ ℂ |
| norm-iii.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| norm-iii-i | ⊢ (normℎ‘(𝐴 ·ℎ 𝐵)) = ((abs‘𝐴) · (normℎ‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm-iii.1 | . . . . 5 ⊢ 𝐴 ∈ ℂ | |
| 2 | norm-iii.2 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 1, 2, 2 | his35i 30991 | . . . 4 ⊢ ((𝐴 ·ℎ 𝐵) ·ih (𝐴 ·ℎ 𝐵)) = ((𝐴 · (∗‘𝐴)) · (𝐵 ·ih 𝐵)) |
| 4 | 3 | fveq2i 6843 | . . 3 ⊢ (√‘((𝐴 ·ℎ 𝐵) ·ih (𝐴 ·ℎ 𝐵))) = (√‘((𝐴 · (∗‘𝐴)) · (𝐵 ·ih 𝐵))) |
| 5 | 1 | cjmulrcli 15119 | . . . 4 ⊢ (𝐴 · (∗‘𝐴)) ∈ ℝ |
| 6 | hiidrcl 30997 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ) | |
| 7 | 2, 6 | ax-mp 5 | . . . 4 ⊢ (𝐵 ·ih 𝐵) ∈ ℝ |
| 8 | 1 | cjmulge0i 15121 | . . . 4 ⊢ 0 ≤ (𝐴 · (∗‘𝐴)) |
| 9 | hiidge0 31000 | . . . . 5 ⊢ (𝐵 ∈ ℋ → 0 ≤ (𝐵 ·ih 𝐵)) | |
| 10 | 2, 9 | ax-mp 5 | . . . 4 ⊢ 0 ≤ (𝐵 ·ih 𝐵) |
| 11 | 5, 7, 8, 10 | sqrtmulii 15329 | . . 3 ⊢ (√‘((𝐴 · (∗‘𝐴)) · (𝐵 ·ih 𝐵))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 ·ih 𝐵))) |
| 12 | 4, 11 | eqtri 2752 | . 2 ⊢ (√‘((𝐴 ·ℎ 𝐵) ·ih (𝐴 ·ℎ 𝐵))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 ·ih 𝐵))) |
| 13 | 1, 2 | hvmulcli 30916 | . . 3 ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ |
| 14 | normval 31026 | . . 3 ⊢ ((𝐴 ·ℎ 𝐵) ∈ ℋ → (normℎ‘(𝐴 ·ℎ 𝐵)) = (√‘((𝐴 ·ℎ 𝐵) ·ih (𝐴 ·ℎ 𝐵)))) | |
| 15 | 13, 14 | ax-mp 5 | . 2 ⊢ (normℎ‘(𝐴 ·ℎ 𝐵)) = (√‘((𝐴 ·ℎ 𝐵) ·ih (𝐴 ·ℎ 𝐵))) |
| 16 | absval 15180 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | |
| 17 | 1, 16 | ax-mp 5 | . . 3 ⊢ (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))) |
| 18 | normval 31026 | . . . 4 ⊢ (𝐵 ∈ ℋ → (normℎ‘𝐵) = (√‘(𝐵 ·ih 𝐵))) | |
| 19 | 2, 18 | ax-mp 5 | . . 3 ⊢ (normℎ‘𝐵) = (√‘(𝐵 ·ih 𝐵)) |
| 20 | 17, 19 | oveq12i 7381 | . 2 ⊢ ((abs‘𝐴) · (normℎ‘𝐵)) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 ·ih 𝐵))) |
| 21 | 12, 15, 20 | 3eqtr4i 2762 | 1 ⊢ (normℎ‘(𝐴 ·ℎ 𝐵)) = ((abs‘𝐴) · (normℎ‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 · cmul 11049 ≤ cle 11185 ∗ccj 15038 √csqrt 15175 abscabs 15176 ℋchba 30821 ·ℎ csm 30823 ·ih csp 30824 normℎcno 30825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-hv0cl 30905 ax-hfvmul 30907 ax-hvmul0 30912 ax-hfi 30981 ax-his1 30984 ax-his3 30986 ax-his4 30987 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-hnorm 30870 |
| This theorem is referenced by: norm-iii 31042 normsubi 31043 normpar2i 31058 |
| Copyright terms: Public domain | W3C validator |