HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm-iii-i Structured version   Visualization version   GIF version

Theorem norm-iii-i 31072
Description: Theorem 3.3(iii) of [Beran] p. 97. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm-iii.1 𝐴 ∈ ℂ
norm-iii.2 𝐵 ∈ ℋ
Assertion
Ref Expression
norm-iii-i (norm‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (norm𝐵))

Proof of Theorem norm-iii-i
StepHypRef Expression
1 norm-iii.1 . . . . 5 𝐴 ∈ ℂ
2 norm-iii.2 . . . . 5 𝐵 ∈ ℋ
31, 1, 2, 2his35i 31022 . . . 4 ((𝐴 · 𝐵) ·ih (𝐴 · 𝐵)) = ((𝐴 · (∗‘𝐴)) · (𝐵 ·ih 𝐵))
43fveq2i 6904 . . 3 (√‘((𝐴 · 𝐵) ·ih (𝐴 · 𝐵))) = (√‘((𝐴 · (∗‘𝐴)) · (𝐵 ·ih 𝐵)))
51cjmulrcli 15182 . . . 4 (𝐴 · (∗‘𝐴)) ∈ ℝ
6 hiidrcl 31028 . . . . 5 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
72, 6ax-mp 5 . . . 4 (𝐵 ·ih 𝐵) ∈ ℝ
81cjmulge0i 15184 . . . 4 0 ≤ (𝐴 · (∗‘𝐴))
9 hiidge0 31031 . . . . 5 (𝐵 ∈ ℋ → 0 ≤ (𝐵 ·ih 𝐵))
102, 9ax-mp 5 . . . 4 0 ≤ (𝐵 ·ih 𝐵)
115, 7, 8, 10sqrtmulii 15391 . . 3 (√‘((𝐴 · (∗‘𝐴)) · (𝐵 ·ih 𝐵))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 ·ih 𝐵)))
124, 11eqtri 2754 . 2 (√‘((𝐴 · 𝐵) ·ih (𝐴 · 𝐵))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 ·ih 𝐵)))
131, 2hvmulcli 30947 . . 3 (𝐴 · 𝐵) ∈ ℋ
14 normval 31057 . . 3 ((𝐴 · 𝐵) ∈ ℋ → (norm‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) ·ih (𝐴 · 𝐵))))
1513, 14ax-mp 5 . 2 (norm‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) ·ih (𝐴 · 𝐵)))
16 absval 15243 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
171, 16ax-mp 5 . . 3 (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))
18 normval 31057 . . . 4 (𝐵 ∈ ℋ → (norm𝐵) = (√‘(𝐵 ·ih 𝐵)))
192, 18ax-mp 5 . . 3 (norm𝐵) = (√‘(𝐵 ·ih 𝐵))
2017, 19oveq12i 7436 . 2 ((abs‘𝐴) · (norm𝐵)) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 ·ih 𝐵)))
2112, 15, 203eqtr4i 2764 1 (norm‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (norm𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099   class class class wbr 5153  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158   · cmul 11163  cle 11299  ccj 15101  csqrt 15238  abscabs 15239  chba 30852   · csm 30854   ·ih csp 30855  normcno 30856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-hv0cl 30936  ax-hfvmul 30938  ax-hvmul0 30943  ax-hfi 31012  ax-his1 31015  ax-his3 31017  ax-his4 31018
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-hnorm 30901
This theorem is referenced by:  norm-iii  31073  normsubi  31074  normpar2i  31089
  Copyright terms: Public domain W3C validator