HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm-iii-i Structured version   Visualization version   GIF version

Theorem norm-iii-i 31171
Description: Theorem 3.3(iii) of [Beran] p. 97. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm-iii.1 𝐴 ∈ ℂ
norm-iii.2 𝐵 ∈ ℋ
Assertion
Ref Expression
norm-iii-i (norm‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (norm𝐵))

Proof of Theorem norm-iii-i
StepHypRef Expression
1 norm-iii.1 . . . . 5 𝐴 ∈ ℂ
2 norm-iii.2 . . . . 5 𝐵 ∈ ℋ
31, 1, 2, 2his35i 31121 . . . 4 ((𝐴 · 𝐵) ·ih (𝐴 · 𝐵)) = ((𝐴 · (∗‘𝐴)) · (𝐵 ·ih 𝐵))
43fveq2i 6923 . . 3 (√‘((𝐴 · 𝐵) ·ih (𝐴 · 𝐵))) = (√‘((𝐴 · (∗‘𝐴)) · (𝐵 ·ih 𝐵)))
51cjmulrcli 15226 . . . 4 (𝐴 · (∗‘𝐴)) ∈ ℝ
6 hiidrcl 31127 . . . . 5 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
72, 6ax-mp 5 . . . 4 (𝐵 ·ih 𝐵) ∈ ℝ
81cjmulge0i 15228 . . . 4 0 ≤ (𝐴 · (∗‘𝐴))
9 hiidge0 31130 . . . . 5 (𝐵 ∈ ℋ → 0 ≤ (𝐵 ·ih 𝐵))
102, 9ax-mp 5 . . . 4 0 ≤ (𝐵 ·ih 𝐵)
115, 7, 8, 10sqrtmulii 15435 . . 3 (√‘((𝐴 · (∗‘𝐴)) · (𝐵 ·ih 𝐵))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 ·ih 𝐵)))
124, 11eqtri 2768 . 2 (√‘((𝐴 · 𝐵) ·ih (𝐴 · 𝐵))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 ·ih 𝐵)))
131, 2hvmulcli 31046 . . 3 (𝐴 · 𝐵) ∈ ℋ
14 normval 31156 . . 3 ((𝐴 · 𝐵) ∈ ℋ → (norm‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) ·ih (𝐴 · 𝐵))))
1513, 14ax-mp 5 . 2 (norm‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) ·ih (𝐴 · 𝐵)))
16 absval 15287 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
171, 16ax-mp 5 . . 3 (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))
18 normval 31156 . . . 4 (𝐵 ∈ ℋ → (norm𝐵) = (√‘(𝐵 ·ih 𝐵)))
192, 18ax-mp 5 . . 3 (norm𝐵) = (√‘(𝐵 ·ih 𝐵))
2017, 19oveq12i 7460 . 2 ((abs‘𝐴) · (norm𝐵)) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 ·ih 𝐵)))
2112, 15, 203eqtr4i 2778 1 (norm‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (norm𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   · cmul 11189  cle 11325  ccj 15145  csqrt 15282  abscabs 15283  chba 30951   · csm 30953   ·ih csp 30954  normcno 30955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-hv0cl 31035  ax-hfvmul 31037  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his3 31116  ax-his4 31117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-hnorm 31000
This theorem is referenced by:  norm-iii  31172  normsubi  31173  normpar2i  31188
  Copyright terms: Public domain W3C validator