HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm-iii-i Structured version   Visualization version   GIF version

Theorem norm-iii-i 28915
Description: Theorem 3.3(iii) of [Beran] p. 97. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm-iii.1 𝐴 ∈ ℂ
norm-iii.2 𝐵 ∈ ℋ
Assertion
Ref Expression
norm-iii-i (norm‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (norm𝐵))

Proof of Theorem norm-iii-i
StepHypRef Expression
1 norm-iii.1 . . . . 5 𝐴 ∈ ℂ
2 norm-iii.2 . . . . 5 𝐵 ∈ ℋ
31, 1, 2, 2his35i 28865 . . . 4 ((𝐴 · 𝐵) ·ih (𝐴 · 𝐵)) = ((𝐴 · (∗‘𝐴)) · (𝐵 ·ih 𝐵))
43fveq2i 6672 . . 3 (√‘((𝐴 · 𝐵) ·ih (𝐴 · 𝐵))) = (√‘((𝐴 · (∗‘𝐴)) · (𝐵 ·ih 𝐵)))
51cjmulrcli 14535 . . . 4 (𝐴 · (∗‘𝐴)) ∈ ℝ
6 hiidrcl 28871 . . . . 5 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
72, 6ax-mp 5 . . . 4 (𝐵 ·ih 𝐵) ∈ ℝ
81cjmulge0i 14537 . . . 4 0 ≤ (𝐴 · (∗‘𝐴))
9 hiidge0 28874 . . . . 5 (𝐵 ∈ ℋ → 0 ≤ (𝐵 ·ih 𝐵))
102, 9ax-mp 5 . . . 4 0 ≤ (𝐵 ·ih 𝐵)
115, 7, 8, 10sqrtmulii 14745 . . 3 (√‘((𝐴 · (∗‘𝐴)) · (𝐵 ·ih 𝐵))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 ·ih 𝐵)))
124, 11eqtri 2844 . 2 (√‘((𝐴 · 𝐵) ·ih (𝐴 · 𝐵))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 ·ih 𝐵)))
131, 2hvmulcli 28790 . . 3 (𝐴 · 𝐵) ∈ ℋ
14 normval 28900 . . 3 ((𝐴 · 𝐵) ∈ ℋ → (norm‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) ·ih (𝐴 · 𝐵))))
1513, 14ax-mp 5 . 2 (norm‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) ·ih (𝐴 · 𝐵)))
16 absval 14596 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
171, 16ax-mp 5 . . 3 (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))
18 normval 28900 . . . 4 (𝐵 ∈ ℋ → (norm𝐵) = (√‘(𝐵 ·ih 𝐵)))
192, 18ax-mp 5 . . 3 (norm𝐵) = (√‘(𝐵 ·ih 𝐵))
2017, 19oveq12i 7167 . 2 ((abs‘𝐴) · (norm𝐵)) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 ·ih 𝐵)))
2112, 15, 203eqtr4i 2854 1 (norm‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (norm𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2110   class class class wbr 5065  cfv 6354  (class class class)co 7155  cc 10534  cr 10535  0cc0 10536   · cmul 10541  cle 10675  ccj 14454  csqrt 14591  abscabs 14592  chba 28695   · csm 28697   ·ih csp 28698  normcno 28699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-hv0cl 28779  ax-hfvmul 28781  ax-hvmul0 28786  ax-hfi 28855  ax-his1 28858  ax-his3 28860  ax-his4 28861
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-hnorm 28744
This theorem is referenced by:  norm-iii  28916  normsubi  28917  normpar2i  28932
  Copyright terms: Public domain W3C validator