HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normcl Structured version   Visualization version   GIF version

Theorem normcl 31153
Description: Real closure of the norm of a vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
normcl (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)

Proof of Theorem normcl
StepHypRef Expression
1 normf 31151 . 2 norm: ℋ⟶ℝ
21ffvelcdmi 7102 1 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  cfv 6562  cr 11151  chba 30947  normcno 30951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-hv0cl 31031  ax-hvmul0 31038  ax-hfi 31107  ax-his1 31110  ax-his3 31112  ax-his4 31113
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-hnorm 30996
This theorem is referenced by:  norm-i  31157  normcli  31159  normpyc  31174  hhph  31206  bcs2  31210  norm1  31277  norm1exi  31278  pjhthlem1  31419  chscllem2  31666  pjige0i  31718  pjnorm2  31755  nmopsetretALT  31891  nmopub2tALT  31937  nmopge0  31939  unopnorm  31945  nmfnleub2  31954  eigvalcl  31989  nmlnop0iALT  32023  nmbdoplbi  32052  nmcexi  32054  nmcopexi  32055  nmcoplbi  32056  nmophmi  32059  lnconi  32061  lnopconi  32062  nmbdfnlbi  32077  nmcfnlbi  32080  riesz4i  32091  riesz1  32093  cnlnadjlem2  32096  cnlnadjlem7  32101  nmopadjlem  32117  nmoptrii  32122  nmopcoi  32123  nmopcoadji  32129  branmfn  32133  brabn  32134  leopnmid  32166  pjnmopi  32176  pjnormssi  32196  pjssposi  32200  hstle1  32254  hst1h  32255  hstle  32258  hstles  32259  hstoh  32260  strlem1  32278  strlem3a  32280  strlem5  32283  hstrlem6  32292  jplem1  32296  cdj1i  32461  cdj3lem1  32462  cdj3lem2b  32465  cdj3lem3b  32468  cdj3i  32469
  Copyright terms: Public domain W3C validator