HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normcl Structured version   Visualization version   GIF version

Theorem normcl 31069
Description: Real closure of the norm of a vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
normcl (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)

Proof of Theorem normcl
StepHypRef Expression
1 normf 31067 . 2 norm: ℋ⟶ℝ
21ffvelcdmi 7017 1 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6482  cr 11008  chba 30863  normcno 30867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-hv0cl 30947  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his3 31028  ax-his4 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-hnorm 30912
This theorem is referenced by:  norm-i  31073  normcli  31075  normpyc  31090  hhph  31122  bcs2  31126  norm1  31193  norm1exi  31194  pjhthlem1  31335  chscllem2  31582  pjige0i  31634  pjnorm2  31671  nmopsetretALT  31807  nmopub2tALT  31853  nmopge0  31855  unopnorm  31861  nmfnleub2  31870  eigvalcl  31905  nmlnop0iALT  31939  nmbdoplbi  31968  nmcexi  31970  nmcopexi  31971  nmcoplbi  31972  nmophmi  31975  lnconi  31977  lnopconi  31978  nmbdfnlbi  31993  nmcfnlbi  31996  riesz4i  32007  riesz1  32009  cnlnadjlem2  32012  cnlnadjlem7  32017  nmopadjlem  32033  nmoptrii  32038  nmopcoi  32039  nmopcoadji  32045  branmfn  32049  brabn  32050  leopnmid  32082  pjnmopi  32092  pjnormssi  32112  pjssposi  32116  hstle1  32170  hst1h  32171  hstle  32174  hstles  32175  hstoh  32176  strlem1  32194  strlem3a  32196  strlem5  32199  hstrlem6  32208  jplem1  32212  cdj1i  32377  cdj3lem1  32378  cdj3lem2b  32381  cdj3lem3b  32384  cdj3i  32385
  Copyright terms: Public domain W3C validator