| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normcl | Structured version Visualization version GIF version | ||
| Description: Real closure of the norm of a vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normcl | ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normf 31142 | . 2 ⊢ normℎ: ℋ⟶ℝ | |
| 2 | 1 | ffvelcdmi 7103 | 1 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6561 ℝcr 11154 ℋchba 30938 normℎcno 30942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-hv0cl 31022 ax-hvmul0 31029 ax-hfi 31098 ax-his1 31101 ax-his3 31103 ax-his4 31104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-hnorm 30987 |
| This theorem is referenced by: norm-i 31148 normcli 31150 normpyc 31165 hhph 31197 bcs2 31201 norm1 31268 norm1exi 31269 pjhthlem1 31410 chscllem2 31657 pjige0i 31709 pjnorm2 31746 nmopsetretALT 31882 nmopub2tALT 31928 nmopge0 31930 unopnorm 31936 nmfnleub2 31945 eigvalcl 31980 nmlnop0iALT 32014 nmbdoplbi 32043 nmcexi 32045 nmcopexi 32046 nmcoplbi 32047 nmophmi 32050 lnconi 32052 lnopconi 32053 nmbdfnlbi 32068 nmcfnlbi 32071 riesz4i 32082 riesz1 32084 cnlnadjlem2 32087 cnlnadjlem7 32092 nmopadjlem 32108 nmoptrii 32113 nmopcoi 32114 nmopcoadji 32120 branmfn 32124 brabn 32125 leopnmid 32157 pjnmopi 32167 pjnormssi 32187 pjssposi 32191 hstle1 32245 hst1h 32246 hstle 32249 hstles 32250 hstoh 32251 strlem1 32269 strlem3a 32271 strlem5 32274 hstrlem6 32283 jplem1 32287 cdj1i 32452 cdj3lem1 32453 cdj3lem2b 32456 cdj3lem3b 32459 cdj3i 32460 |
| Copyright terms: Public domain | W3C validator |