HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm-ii-i Structured version   Visualization version   GIF version

Theorem norm-ii-i 31156
Description: Triangle inequality for norms. Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm-ii.1 𝐴 ∈ ℋ
norm-ii.2 𝐵 ∈ ℋ
Assertion
Ref Expression
norm-ii-i (norm‘(𝐴 + 𝐵)) ≤ ((norm𝐴) + (norm𝐵))

Proof of Theorem norm-ii-i
StepHypRef Expression
1 1re 11261 . . . . . . . . . . 11 1 ∈ ℝ
2 ax-1cn 11213 . . . . . . . . . . . 12 1 ∈ ℂ
32cjrebi 15213 . . . . . . . . . . 11 (1 ∈ ℝ ↔ (∗‘1) = 1)
41, 3mpbi 230 . . . . . . . . . 10 (∗‘1) = 1
54oveq1i 7441 . . . . . . . . 9 ((∗‘1) · (𝐵 ·ih 𝐴)) = (1 · (𝐵 ·ih 𝐴))
6 norm-ii.2 . . . . . . . . . . 11 𝐵 ∈ ℋ
7 norm-ii.1 . . . . . . . . . . 11 𝐴 ∈ ℋ
86, 7hicli 31100 . . . . . . . . . 10 (𝐵 ·ih 𝐴) ∈ ℂ
98mullidi 11266 . . . . . . . . 9 (1 · (𝐵 ·ih 𝐴)) = (𝐵 ·ih 𝐴)
105, 9eqtri 2765 . . . . . . . 8 ((∗‘1) · (𝐵 ·ih 𝐴)) = (𝐵 ·ih 𝐴)
117, 6hicli 31100 . . . . . . . . 9 (𝐴 ·ih 𝐵) ∈ ℂ
1211mullidi 11266 . . . . . . . 8 (1 · (𝐴 ·ih 𝐵)) = (𝐴 ·ih 𝐵)
1310, 12oveq12i 7443 . . . . . . 7 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) = ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))
14 abs1 15336 . . . . . . . 8 (abs‘1) = 1
152, 6, 7, 14normlem7 31135 . . . . . . 7 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))
1613, 15eqbrtrri 5166 . . . . . 6 ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) ≤ (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))
17 eqid 2737 . . . . . . . . . 10 -(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) = -(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵)))
182, 6, 7, 17normlem2 31130 . . . . . . . . 9 -(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ
192cjcli 15208 . . . . . . . . . . . 12 (∗‘1) ∈ ℂ
2019, 8mulcli 11268 . . . . . . . . . . 11 ((∗‘1) · (𝐵 ·ih 𝐴)) ∈ ℂ
212, 11mulcli 11268 . . . . . . . . . . 11 (1 · (𝐴 ·ih 𝐵)) ∈ ℂ
2220, 21addcli 11267 . . . . . . . . . 10 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℂ
2322negrebi 11583 . . . . . . . . 9 (-(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ ↔ (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ)
2418, 23mpbi 230 . . . . . . . 8 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ
2513, 24eqeltrri 2838 . . . . . . 7 ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) ∈ ℝ
26 2re 12340 . . . . . . . 8 2 ∈ ℝ
27 hiidge0 31117 . . . . . . . . . . 11 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
287, 27ax-mp 5 . . . . . . . . . 10 0 ≤ (𝐴 ·ih 𝐴)
29 hiidrcl 31114 . . . . . . . . . . . 12 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
307, 29ax-mp 5 . . . . . . . . . . 11 (𝐴 ·ih 𝐴) ∈ ℝ
3130sqrtcli 15410 . . . . . . . . . 10 (0 ≤ (𝐴 ·ih 𝐴) → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ)
3228, 31ax-mp 5 . . . . . . . . 9 (√‘(𝐴 ·ih 𝐴)) ∈ ℝ
33 hiidge0 31117 . . . . . . . . . . 11 (𝐵 ∈ ℋ → 0 ≤ (𝐵 ·ih 𝐵))
346, 33ax-mp 5 . . . . . . . . . 10 0 ≤ (𝐵 ·ih 𝐵)
35 hiidrcl 31114 . . . . . . . . . . . 12 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
366, 35ax-mp 5 . . . . . . . . . . 11 (𝐵 ·ih 𝐵) ∈ ℝ
3736sqrtcli 15410 . . . . . . . . . 10 (0 ≤ (𝐵 ·ih 𝐵) → (√‘(𝐵 ·ih 𝐵)) ∈ ℝ)
3834, 37ax-mp 5 . . . . . . . . 9 (√‘(𝐵 ·ih 𝐵)) ∈ ℝ
3932, 38remulcli 11277 . . . . . . . 8 ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))) ∈ ℝ
4026, 39remulcli 11277 . . . . . . 7 (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))) ∈ ℝ
4130, 36readdcli 11276 . . . . . . 7 ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈ ℝ
4225, 40, 41leadd2i 11819 . . . . . 6 (((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) ≤ (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))) ↔ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))) ≤ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))))
4316, 42mpbi 230 . . . . 5 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))) ≤ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
447, 6, 7, 6normlem8 31136 . . . . . 6 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
4511, 8addcomi 11452 . . . . . . 7 ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))
4645oveq2i 7442 . . . . . 6 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)))
4744, 46eqtri 2765 . . . . 5 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)))
4832recni 11275 . . . . . . 7 (√‘(𝐴 ·ih 𝐴)) ∈ ℂ
4938recni 11275 . . . . . . 7 (√‘(𝐵 ·ih 𝐵)) ∈ ℂ
5048, 49binom2i 14251 . . . . . 6 (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) = ((((√‘(𝐴 ·ih 𝐴))↑2) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))) + ((√‘(𝐵 ·ih 𝐵))↑2))
5148sqcli 14220 . . . . . . 7 ((√‘(𝐴 ·ih 𝐴))↑2) ∈ ℂ
52 2cn 12341 . . . . . . . 8 2 ∈ ℂ
5348, 49mulcli 11268 . . . . . . . 8 ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))) ∈ ℂ
5452, 53mulcli 11268 . . . . . . 7 (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))) ∈ ℂ
5549sqcli 14220 . . . . . . 7 ((√‘(𝐵 ·ih 𝐵))↑2) ∈ ℂ
5651, 54, 55add32i 11485 . . . . . 6 ((((√‘(𝐴 ·ih 𝐴))↑2) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))) + ((√‘(𝐵 ·ih 𝐵))↑2)) = ((((√‘(𝐴 ·ih 𝐴))↑2) + ((√‘(𝐵 ·ih 𝐵))↑2)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
5730sqsqrti 15414 . . . . . . . . 9 (0 ≤ (𝐴 ·ih 𝐴) → ((√‘(𝐴 ·ih 𝐴))↑2) = (𝐴 ·ih 𝐴))
5828, 57ax-mp 5 . . . . . . . 8 ((√‘(𝐴 ·ih 𝐴))↑2) = (𝐴 ·ih 𝐴)
5936sqsqrti 15414 . . . . . . . . 9 (0 ≤ (𝐵 ·ih 𝐵) → ((√‘(𝐵 ·ih 𝐵))↑2) = (𝐵 ·ih 𝐵))
6034, 59ax-mp 5 . . . . . . . 8 ((√‘(𝐵 ·ih 𝐵))↑2) = (𝐵 ·ih 𝐵)
6158, 60oveq12i 7443 . . . . . . 7 (((√‘(𝐴 ·ih 𝐴))↑2) + ((√‘(𝐵 ·ih 𝐵))↑2)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))
6261oveq1i 7441 . . . . . 6 ((((√‘(𝐴 ·ih 𝐴))↑2) + ((√‘(𝐵 ·ih 𝐵))↑2)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
6350, 56, 623eqtri 2769 . . . . 5 (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
6443, 47, 633brtr4i 5173 . . . 4 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)
657, 6hvaddcli 31037 . . . . . 6 (𝐴 + 𝐵) ∈ ℋ
66 hiidge0 31117 . . . . . 6 ((𝐴 + 𝐵) ∈ ℋ → 0 ≤ ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
6765, 66ax-mp 5 . . . . 5 0 ≤ ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))
6832, 38readdcli 11276 . . . . . 6 ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))) ∈ ℝ
6968sqge0i 14227 . . . . 5 0 ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)
70 hiidrcl 31114 . . . . . . 7 ((𝐴 + 𝐵) ∈ ℋ → ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ∈ ℝ)
7165, 70ax-mp 5 . . . . . 6 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ∈ ℝ
7268resqcli 14225 . . . . . 6 (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) ∈ ℝ
7371, 72sqrtlei 15427 . . . . 5 ((0 ≤ ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ∧ 0 ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)) → (((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) ↔ (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2))))
7467, 69, 73mp2an 692 . . . 4 (((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) ↔ (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)))
7564, 74mpbi 230 . . 3 (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2))
7630sqrtge0i 15415 . . . . . 6 (0 ≤ (𝐴 ·ih 𝐴) → 0 ≤ (√‘(𝐴 ·ih 𝐴)))
7728, 76ax-mp 5 . . . . 5 0 ≤ (√‘(𝐴 ·ih 𝐴))
7836sqrtge0i 15415 . . . . . 6 (0 ≤ (𝐵 ·ih 𝐵) → 0 ≤ (√‘(𝐵 ·ih 𝐵)))
7934, 78ax-mp 5 . . . . 5 0 ≤ (√‘(𝐵 ·ih 𝐵))
8032, 38addge0i 11803 . . . . 5 ((0 ≤ (√‘(𝐴 ·ih 𝐴)) ∧ 0 ≤ (√‘(𝐵 ·ih 𝐵))) → 0 ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))))
8177, 79, 80mp2an 692 . . . 4 0 ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
8268sqrtsqi 15413 . . . 4 (0 ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))) → (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)) = ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))))
8381, 82ax-mp 5 . . 3 (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)) = ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
8475, 83breqtri 5168 . 2 (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
85 normval 31143 . . 3 ((𝐴 + 𝐵) ∈ ℋ → (norm‘(𝐴 + 𝐵)) = (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))))
8665, 85ax-mp 5 . 2 (norm‘(𝐴 + 𝐵)) = (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
87 normval 31143 . . . 4 (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))
887, 87ax-mp 5 . . 3 (norm𝐴) = (√‘(𝐴 ·ih 𝐴))
89 normval 31143 . . . 4 (𝐵 ∈ ℋ → (norm𝐵) = (√‘(𝐵 ·ih 𝐵)))
906, 89ax-mp 5 . . 3 (norm𝐵) = (√‘(𝐵 ·ih 𝐵))
9188, 90oveq12i 7443 . 2 ((norm𝐴) + (norm𝐵)) = ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
9284, 86, 913brtr4i 5173 1 (norm‘(𝐴 + 𝐵)) ≤ ((norm𝐴) + (norm𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  -cneg 11493  2c2 12321  cexp 14102  ccj 15135  csqrt 15272  chba 30938   + cva 30939   ·ih csp 30941  normcno 30942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-hfvadd 31019  ax-hv0cl 31022  ax-hfvmul 31024  ax-hvmulass 31026  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-hnorm 30987  df-hvsub 30990
This theorem is referenced by:  norm-ii  31157  norm3difi  31166
  Copyright terms: Public domain W3C validator