HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm-ii-i Structured version   Visualization version   GIF version

Theorem norm-ii-i 29400
Description: Triangle inequality for norms. Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm-ii.1 𝐴 ∈ ℋ
norm-ii.2 𝐵 ∈ ℋ
Assertion
Ref Expression
norm-ii-i (norm‘(𝐴 + 𝐵)) ≤ ((norm𝐴) + (norm𝐵))

Proof of Theorem norm-ii-i
StepHypRef Expression
1 1re 10906 . . . . . . . . . . 11 1 ∈ ℝ
2 ax-1cn 10860 . . . . . . . . . . . 12 1 ∈ ℂ
32cjrebi 14813 . . . . . . . . . . 11 (1 ∈ ℝ ↔ (∗‘1) = 1)
41, 3mpbi 229 . . . . . . . . . 10 (∗‘1) = 1
54oveq1i 7265 . . . . . . . . 9 ((∗‘1) · (𝐵 ·ih 𝐴)) = (1 · (𝐵 ·ih 𝐴))
6 norm-ii.2 . . . . . . . . . . 11 𝐵 ∈ ℋ
7 norm-ii.1 . . . . . . . . . . 11 𝐴 ∈ ℋ
86, 7hicli 29344 . . . . . . . . . 10 (𝐵 ·ih 𝐴) ∈ ℂ
98mulid2i 10911 . . . . . . . . 9 (1 · (𝐵 ·ih 𝐴)) = (𝐵 ·ih 𝐴)
105, 9eqtri 2766 . . . . . . . 8 ((∗‘1) · (𝐵 ·ih 𝐴)) = (𝐵 ·ih 𝐴)
117, 6hicli 29344 . . . . . . . . 9 (𝐴 ·ih 𝐵) ∈ ℂ
1211mulid2i 10911 . . . . . . . 8 (1 · (𝐴 ·ih 𝐵)) = (𝐴 ·ih 𝐵)
1310, 12oveq12i 7267 . . . . . . 7 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) = ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))
14 abs1 14937 . . . . . . . 8 (abs‘1) = 1
152, 6, 7, 14normlem7 29379 . . . . . . 7 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))
1613, 15eqbrtrri 5093 . . . . . 6 ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) ≤ (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))
17 eqid 2738 . . . . . . . . . 10 -(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) = -(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵)))
182, 6, 7, 17normlem2 29374 . . . . . . . . 9 -(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ
192cjcli 14808 . . . . . . . . . . . 12 (∗‘1) ∈ ℂ
2019, 8mulcli 10913 . . . . . . . . . . 11 ((∗‘1) · (𝐵 ·ih 𝐴)) ∈ ℂ
212, 11mulcli 10913 . . . . . . . . . . 11 (1 · (𝐴 ·ih 𝐵)) ∈ ℂ
2220, 21addcli 10912 . . . . . . . . . 10 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℂ
2322negrebi 11225 . . . . . . . . 9 (-(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ ↔ (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ)
2418, 23mpbi 229 . . . . . . . 8 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ
2513, 24eqeltrri 2836 . . . . . . 7 ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) ∈ ℝ
26 2re 11977 . . . . . . . 8 2 ∈ ℝ
27 hiidge0 29361 . . . . . . . . . . 11 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
287, 27ax-mp 5 . . . . . . . . . 10 0 ≤ (𝐴 ·ih 𝐴)
29 hiidrcl 29358 . . . . . . . . . . . 12 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
307, 29ax-mp 5 . . . . . . . . . . 11 (𝐴 ·ih 𝐴) ∈ ℝ
3130sqrtcli 15011 . . . . . . . . . 10 (0 ≤ (𝐴 ·ih 𝐴) → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ)
3228, 31ax-mp 5 . . . . . . . . 9 (√‘(𝐴 ·ih 𝐴)) ∈ ℝ
33 hiidge0 29361 . . . . . . . . . . 11 (𝐵 ∈ ℋ → 0 ≤ (𝐵 ·ih 𝐵))
346, 33ax-mp 5 . . . . . . . . . 10 0 ≤ (𝐵 ·ih 𝐵)
35 hiidrcl 29358 . . . . . . . . . . . 12 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
366, 35ax-mp 5 . . . . . . . . . . 11 (𝐵 ·ih 𝐵) ∈ ℝ
3736sqrtcli 15011 . . . . . . . . . 10 (0 ≤ (𝐵 ·ih 𝐵) → (√‘(𝐵 ·ih 𝐵)) ∈ ℝ)
3834, 37ax-mp 5 . . . . . . . . 9 (√‘(𝐵 ·ih 𝐵)) ∈ ℝ
3932, 38remulcli 10922 . . . . . . . 8 ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))) ∈ ℝ
4026, 39remulcli 10922 . . . . . . 7 (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))) ∈ ℝ
4130, 36readdcli 10921 . . . . . . 7 ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈ ℝ
4225, 40, 41leadd2i 11461 . . . . . 6 (((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) ≤ (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))) ↔ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))) ≤ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))))
4316, 42mpbi 229 . . . . 5 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))) ≤ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
447, 6, 7, 6normlem8 29380 . . . . . 6 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
4511, 8addcomi 11096 . . . . . . 7 ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))
4645oveq2i 7266 . . . . . 6 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)))
4744, 46eqtri 2766 . . . . 5 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)))
4832recni 10920 . . . . . . 7 (√‘(𝐴 ·ih 𝐴)) ∈ ℂ
4938recni 10920 . . . . . . 7 (√‘(𝐵 ·ih 𝐵)) ∈ ℂ
5048, 49binom2i 13856 . . . . . 6 (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) = ((((√‘(𝐴 ·ih 𝐴))↑2) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))) + ((√‘(𝐵 ·ih 𝐵))↑2))
5148sqcli 13826 . . . . . . 7 ((√‘(𝐴 ·ih 𝐴))↑2) ∈ ℂ
52 2cn 11978 . . . . . . . 8 2 ∈ ℂ
5348, 49mulcli 10913 . . . . . . . 8 ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))) ∈ ℂ
5452, 53mulcli 10913 . . . . . . 7 (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))) ∈ ℂ
5549sqcli 13826 . . . . . . 7 ((√‘(𝐵 ·ih 𝐵))↑2) ∈ ℂ
5651, 54, 55add32i 11128 . . . . . 6 ((((√‘(𝐴 ·ih 𝐴))↑2) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))) + ((√‘(𝐵 ·ih 𝐵))↑2)) = ((((√‘(𝐴 ·ih 𝐴))↑2) + ((√‘(𝐵 ·ih 𝐵))↑2)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
5730sqsqrti 15015 . . . . . . . . 9 (0 ≤ (𝐴 ·ih 𝐴) → ((√‘(𝐴 ·ih 𝐴))↑2) = (𝐴 ·ih 𝐴))
5828, 57ax-mp 5 . . . . . . . 8 ((√‘(𝐴 ·ih 𝐴))↑2) = (𝐴 ·ih 𝐴)
5936sqsqrti 15015 . . . . . . . . 9 (0 ≤ (𝐵 ·ih 𝐵) → ((√‘(𝐵 ·ih 𝐵))↑2) = (𝐵 ·ih 𝐵))
6034, 59ax-mp 5 . . . . . . . 8 ((√‘(𝐵 ·ih 𝐵))↑2) = (𝐵 ·ih 𝐵)
6158, 60oveq12i 7267 . . . . . . 7 (((√‘(𝐴 ·ih 𝐴))↑2) + ((√‘(𝐵 ·ih 𝐵))↑2)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))
6261oveq1i 7265 . . . . . 6 ((((√‘(𝐴 ·ih 𝐴))↑2) + ((√‘(𝐵 ·ih 𝐵))↑2)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
6350, 56, 623eqtri 2770 . . . . 5 (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
6443, 47, 633brtr4i 5100 . . . 4 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)
657, 6hvaddcli 29281 . . . . . 6 (𝐴 + 𝐵) ∈ ℋ
66 hiidge0 29361 . . . . . 6 ((𝐴 + 𝐵) ∈ ℋ → 0 ≤ ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
6765, 66ax-mp 5 . . . . 5 0 ≤ ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))
6832, 38readdcli 10921 . . . . . 6 ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))) ∈ ℝ
6968sqge0i 13833 . . . . 5 0 ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)
70 hiidrcl 29358 . . . . . . 7 ((𝐴 + 𝐵) ∈ ℋ → ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ∈ ℝ)
7165, 70ax-mp 5 . . . . . 6 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ∈ ℝ
7268resqcli 13831 . . . . . 6 (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) ∈ ℝ
7371, 72sqrtlei 15028 . . . . 5 ((0 ≤ ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ∧ 0 ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)) → (((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) ↔ (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2))))
7467, 69, 73mp2an 688 . . . 4 (((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) ↔ (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)))
7564, 74mpbi 229 . . 3 (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2))
7630sqrtge0i 15016 . . . . . 6 (0 ≤ (𝐴 ·ih 𝐴) → 0 ≤ (√‘(𝐴 ·ih 𝐴)))
7728, 76ax-mp 5 . . . . 5 0 ≤ (√‘(𝐴 ·ih 𝐴))
7836sqrtge0i 15016 . . . . . 6 (0 ≤ (𝐵 ·ih 𝐵) → 0 ≤ (√‘(𝐵 ·ih 𝐵)))
7934, 78ax-mp 5 . . . . 5 0 ≤ (√‘(𝐵 ·ih 𝐵))
8032, 38addge0i 11445 . . . . 5 ((0 ≤ (√‘(𝐴 ·ih 𝐴)) ∧ 0 ≤ (√‘(𝐵 ·ih 𝐵))) → 0 ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))))
8177, 79, 80mp2an 688 . . . 4 0 ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
8268sqrtsqi 15014 . . . 4 (0 ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))) → (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)) = ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))))
8381, 82ax-mp 5 . . 3 (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)) = ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
8475, 83breqtri 5095 . 2 (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
85 normval 29387 . . 3 ((𝐴 + 𝐵) ∈ ℋ → (norm‘(𝐴 + 𝐵)) = (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))))
8665, 85ax-mp 5 . 2 (norm‘(𝐴 + 𝐵)) = (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
87 normval 29387 . . . 4 (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))
887, 87ax-mp 5 . . 3 (norm𝐴) = (√‘(𝐴 ·ih 𝐴))
89 normval 29387 . . . 4 (𝐵 ∈ ℋ → (norm𝐵) = (√‘(𝐵 ·ih 𝐵)))
906, 89ax-mp 5 . . 3 (norm𝐵) = (√‘(𝐵 ·ih 𝐵))
9188, 90oveq12i 7267 . 2 ((norm𝐴) + (norm𝐵)) = ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
9284, 86, 913brtr4i 5100 1 (norm‘(𝐴 + 𝐵)) ≤ ((norm𝐴) + (norm𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  -cneg 11136  2c2 11958  cexp 13710  ccj 14735  csqrt 14872  chba 29182   + cva 29183   ·ih csp 29185  normcno 29186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-hfvadd 29263  ax-hv0cl 29266  ax-hfvmul 29268  ax-hvmulass 29270  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-hnorm 29231  df-hvsub 29234
This theorem is referenced by:  norm-ii  29401  norm3difi  29410
  Copyright terms: Public domain W3C validator