Proof of Theorem norm-ii-i
Step | Hyp | Ref
| Expression |
1 | | 1re 10692 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
2 | | ax-1cn 10646 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
3 | 2 | cjrebi 14594 |
. . . . . . . . . . 11
⊢ (1 ∈
ℝ ↔ (∗‘1) = 1) |
4 | 1, 3 | mpbi 233 |
. . . . . . . . . 10
⊢
(∗‘1) = 1 |
5 | 4 | oveq1i 7166 |
. . . . . . . . 9
⊢
((∗‘1) · (𝐵 ·ih 𝐴)) = (1 · (𝐵
·ih 𝐴)) |
6 | | norm-ii.2 |
. . . . . . . . . . 11
⊢ 𝐵 ∈ ℋ |
7 | | norm-ii.1 |
. . . . . . . . . . 11
⊢ 𝐴 ∈ ℋ |
8 | 6, 7 | hicli 28976 |
. . . . . . . . . 10
⊢ (𝐵
·ih 𝐴) ∈ ℂ |
9 | 8 | mulid2i 10697 |
. . . . . . . . 9
⊢ (1
· (𝐵
·ih 𝐴)) = (𝐵 ·ih 𝐴) |
10 | 5, 9 | eqtri 2781 |
. . . . . . . 8
⊢
((∗‘1) · (𝐵 ·ih 𝐴)) = (𝐵 ·ih 𝐴) |
11 | 7, 6 | hicli 28976 |
. . . . . . . . 9
⊢ (𝐴
·ih 𝐵) ∈ ℂ |
12 | 11 | mulid2i 10697 |
. . . . . . . 8
⊢ (1
· (𝐴
·ih 𝐵)) = (𝐴 ·ih 𝐵) |
13 | 10, 12 | oveq12i 7168 |
. . . . . . 7
⊢
(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴
·ih 𝐵))) = ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) |
14 | | abs1 14718 |
. . . . . . . 8
⊢
(abs‘1) = 1 |
15 | 2, 6, 7, 14 | normlem7 29011 |
. . . . . . 7
⊢
(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴
·ih 𝐵))) ≤ (2 · ((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵)))) |
16 | 13, 15 | eqbrtrri 5059 |
. . . . . 6
⊢ ((𝐵
·ih 𝐴) + (𝐴 ·ih 𝐵)) ≤ (2 ·
((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵)))) |
17 | | eqid 2758 |
. . . . . . . . . 10
⊢
-(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴
·ih 𝐵))) = -(((∗‘1) · (𝐵
·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) |
18 | 2, 6, 7, 17 | normlem2 29006 |
. . . . . . . . 9
⊢
-(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴
·ih 𝐵))) ∈ ℝ |
19 | 2 | cjcli 14589 |
. . . . . . . . . . . 12
⊢
(∗‘1) ∈ ℂ |
20 | 19, 8 | mulcli 10699 |
. . . . . . . . . . 11
⊢
((∗‘1) · (𝐵 ·ih 𝐴)) ∈
ℂ |
21 | 2, 11 | mulcli 10699 |
. . . . . . . . . . 11
⊢ (1
· (𝐴
·ih 𝐵)) ∈ ℂ |
22 | 20, 21 | addcli 10698 |
. . . . . . . . . 10
⊢
(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴
·ih 𝐵))) ∈ ℂ |
23 | 22 | negrebi 11011 |
. . . . . . . . 9
⊢
(-(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴
·ih 𝐵))) ∈ ℝ ↔
(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴
·ih 𝐵))) ∈ ℝ) |
24 | 18, 23 | mpbi 233 |
. . . . . . . 8
⊢
(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴
·ih 𝐵))) ∈ ℝ |
25 | 13, 24 | eqeltrri 2849 |
. . . . . . 7
⊢ ((𝐵
·ih 𝐴) + (𝐴 ·ih 𝐵)) ∈
ℝ |
26 | | 2re 11761 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
27 | | hiidge0 28993 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℋ → 0 ≤
(𝐴
·ih 𝐴)) |
28 | 7, 27 | ax-mp 5 |
. . . . . . . . . 10
⊢ 0 ≤
(𝐴
·ih 𝐴) |
29 | | hiidrcl 28990 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℋ → (𝐴
·ih 𝐴) ∈ ℝ) |
30 | 7, 29 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐴
·ih 𝐴) ∈ ℝ |
31 | 30 | sqrtcli 14792 |
. . . . . . . . . 10
⊢ (0 ≤
(𝐴
·ih 𝐴) → (√‘(𝐴 ·ih 𝐴)) ∈
ℝ) |
32 | 28, 31 | ax-mp 5 |
. . . . . . . . 9
⊢
(√‘(𝐴
·ih 𝐴)) ∈ ℝ |
33 | | hiidge0 28993 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℋ → 0 ≤
(𝐵
·ih 𝐵)) |
34 | 6, 33 | ax-mp 5 |
. . . . . . . . . 10
⊢ 0 ≤
(𝐵
·ih 𝐵) |
35 | | hiidrcl 28990 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℋ → (𝐵
·ih 𝐵) ∈ ℝ) |
36 | 6, 35 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐵
·ih 𝐵) ∈ ℝ |
37 | 36 | sqrtcli 14792 |
. . . . . . . . . 10
⊢ (0 ≤
(𝐵
·ih 𝐵) → (√‘(𝐵 ·ih 𝐵)) ∈
ℝ) |
38 | 34, 37 | ax-mp 5 |
. . . . . . . . 9
⊢
(√‘(𝐵
·ih 𝐵)) ∈ ℝ |
39 | 32, 38 | remulcli 10708 |
. . . . . . . 8
⊢
((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵))) ∈ ℝ |
40 | 26, 39 | remulcli 10708 |
. . . . . . 7
⊢ (2
· ((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵)))) ∈ ℝ |
41 | 30, 36 | readdcli 10707 |
. . . . . . 7
⊢ ((𝐴
·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈
ℝ |
42 | 25, 40, 41 | leadd2i 11247 |
. . . . . 6
⊢ (((𝐵
·ih 𝐴) + (𝐴 ·ih 𝐵)) ≤ (2 ·
((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵)))) ↔ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))) ≤ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 ·
((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵)))))) |
43 | 16, 42 | mpbi 233 |
. . . . 5
⊢ (((𝐴
·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))) ≤ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 ·
((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵))))) |
44 | 7, 6, 7, 6 | normlem8 29012 |
. . . . . 6
⊢ ((𝐴 +ℎ 𝐵)
·ih (𝐴 +ℎ 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) |
45 | 11, 8 | addcomi 10882 |
. . . . . . 7
⊢ ((𝐴
·ih 𝐵) + (𝐵 ·ih 𝐴)) = ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) |
46 | 45 | oveq2i 7167 |
. . . . . 6
⊢ (((𝐴
·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))) |
47 | 44, 46 | eqtri 2781 |
. . . . 5
⊢ ((𝐴 +ℎ 𝐵)
·ih (𝐴 +ℎ 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))) |
48 | 32 | recni 10706 |
. . . . . . 7
⊢
(√‘(𝐴
·ih 𝐴)) ∈ ℂ |
49 | 38 | recni 10706 |
. . . . . . 7
⊢
(√‘(𝐵
·ih 𝐵)) ∈ ℂ |
50 | 48, 49 | binom2i 13637 |
. . . . . 6
⊢
(((√‘(𝐴
·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) =
((((√‘(𝐴
·ih 𝐴))↑2) + (2 ·
((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵))))) + ((√‘(𝐵 ·ih 𝐵))↑2)) |
51 | 48 | sqcli 13607 |
. . . . . . 7
⊢
((√‘(𝐴
·ih 𝐴))↑2) ∈ ℂ |
52 | | 2cn 11762 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
53 | 48, 49 | mulcli 10699 |
. . . . . . . 8
⊢
((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵))) ∈ ℂ |
54 | 52, 53 | mulcli 10699 |
. . . . . . 7
⊢ (2
· ((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵)))) ∈ ℂ |
55 | 49 | sqcli 13607 |
. . . . . . 7
⊢
((√‘(𝐵
·ih 𝐵))↑2) ∈ ℂ |
56 | 51, 54, 55 | add32i 10914 |
. . . . . 6
⊢
((((√‘(𝐴
·ih 𝐴))↑2) + (2 ·
((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵))))) + ((√‘(𝐵 ·ih 𝐵))↑2)) =
((((√‘(𝐴
·ih 𝐴))↑2) + ((√‘(𝐵
·ih 𝐵))↑2)) + (2 ·
((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵))))) |
57 | 30 | sqsqrti 14796 |
. . . . . . . . 9
⊢ (0 ≤
(𝐴
·ih 𝐴) → ((√‘(𝐴 ·ih 𝐴))↑2) = (𝐴 ·ih 𝐴)) |
58 | 28, 57 | ax-mp 5 |
. . . . . . . 8
⊢
((√‘(𝐴
·ih 𝐴))↑2) = (𝐴 ·ih 𝐴) |
59 | 36 | sqsqrti 14796 |
. . . . . . . . 9
⊢ (0 ≤
(𝐵
·ih 𝐵) → ((√‘(𝐵 ·ih 𝐵))↑2) = (𝐵 ·ih 𝐵)) |
60 | 34, 59 | ax-mp 5 |
. . . . . . . 8
⊢
((√‘(𝐵
·ih 𝐵))↑2) = (𝐵 ·ih 𝐵) |
61 | 58, 60 | oveq12i 7168 |
. . . . . . 7
⊢
(((√‘(𝐴
·ih 𝐴))↑2) + ((√‘(𝐵
·ih 𝐵))↑2)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) |
62 | 61 | oveq1i 7166 |
. . . . . 6
⊢
((((√‘(𝐴
·ih 𝐴))↑2) + ((√‘(𝐵
·ih 𝐵))↑2)) + (2 ·
((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵))))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 ·
((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵))))) |
63 | 50, 56, 62 | 3eqtri 2785 |
. . . . 5
⊢
(((√‘(𝐴
·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) = (((𝐴
·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 ·
((√‘(𝐴
·ih 𝐴)) · (√‘(𝐵
·ih 𝐵))))) |
64 | 43, 47, 63 | 3brtr4i 5066 |
. . . 4
⊢ ((𝐴 +ℎ 𝐵)
·ih (𝐴 +ℎ 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵
·ih 𝐵)))↑2) |
65 | 7, 6 | hvaddcli 28913 |
. . . . . 6
⊢ (𝐴 +ℎ 𝐵) ∈
ℋ |
66 | | hiidge0 28993 |
. . . . . 6
⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ → 0 ≤
((𝐴 +ℎ
𝐵)
·ih (𝐴 +ℎ 𝐵))) |
67 | 65, 66 | ax-mp 5 |
. . . . 5
⊢ 0 ≤
((𝐴 +ℎ
𝐵)
·ih (𝐴 +ℎ 𝐵)) |
68 | 32, 38 | readdcli 10707 |
. . . . . 6
⊢
((√‘(𝐴
·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))) ∈
ℝ |
69 | 68 | sqge0i 13614 |
. . . . 5
⊢ 0 ≤
(((√‘(𝐴
·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) |
70 | | hiidrcl 28990 |
. . . . . . 7
⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ → ((𝐴 +ℎ 𝐵)
·ih (𝐴 +ℎ 𝐵)) ∈ ℝ) |
71 | 65, 70 | ax-mp 5 |
. . . . . 6
⊢ ((𝐴 +ℎ 𝐵)
·ih (𝐴 +ℎ 𝐵)) ∈ ℝ |
72 | 68 | resqcli 13612 |
. . . . . 6
⊢
(((√‘(𝐴
·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) ∈
ℝ |
73 | 71, 72 | sqrtlei 14809 |
. . . . 5
⊢ ((0 ≤
((𝐴 +ℎ
𝐵)
·ih (𝐴 +ℎ 𝐵)) ∧ 0 ≤ (((√‘(𝐴
·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)) → (((𝐴 +ℎ 𝐵)
·ih (𝐴 +ℎ 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵
·ih 𝐵)))↑2) ↔ (√‘((𝐴 +ℎ 𝐵)
·ih (𝐴 +ℎ 𝐵))) ≤
(√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵
·ih 𝐵)))↑2)))) |
74 | 67, 69, 73 | mp2an 691 |
. . . 4
⊢ (((𝐴 +ℎ 𝐵)
·ih (𝐴 +ℎ 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵
·ih 𝐵)))↑2) ↔ (√‘((𝐴 +ℎ 𝐵)
·ih (𝐴 +ℎ 𝐵))) ≤
(√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵
·ih 𝐵)))↑2))) |
75 | 64, 74 | mpbi 233 |
. . 3
⊢
(√‘((𝐴
+ℎ 𝐵)
·ih (𝐴 +ℎ 𝐵))) ≤
(√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵
·ih 𝐵)))↑2)) |
76 | 30 | sqrtge0i 14797 |
. . . . . 6
⊢ (0 ≤
(𝐴
·ih 𝐴) → 0 ≤ (√‘(𝐴
·ih 𝐴))) |
77 | 28, 76 | ax-mp 5 |
. . . . 5
⊢ 0 ≤
(√‘(𝐴
·ih 𝐴)) |
78 | 36 | sqrtge0i 14797 |
. . . . . 6
⊢ (0 ≤
(𝐵
·ih 𝐵) → 0 ≤ (√‘(𝐵
·ih 𝐵))) |
79 | 34, 78 | ax-mp 5 |
. . . . 5
⊢ 0 ≤
(√‘(𝐵
·ih 𝐵)) |
80 | 32, 38 | addge0i 11231 |
. . . . 5
⊢ ((0 ≤
(√‘(𝐴
·ih 𝐴)) ∧ 0 ≤ (√‘(𝐵
·ih 𝐵))) → 0 ≤ ((√‘(𝐴
·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))) |
81 | 77, 79, 80 | mp2an 691 |
. . . 4
⊢ 0 ≤
((√‘(𝐴
·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))) |
82 | 68 | sqrtsqi 14795 |
. . . 4
⊢ (0 ≤
((√‘(𝐴
·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))) →
(√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵
·ih 𝐵)))↑2)) = ((√‘(𝐴
·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))) |
83 | 81, 82 | ax-mp 5 |
. . 3
⊢
(√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵
·ih 𝐵)))↑2)) = ((√‘(𝐴
·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))) |
84 | 75, 83 | breqtri 5061 |
. 2
⊢
(√‘((𝐴
+ℎ 𝐵)
·ih (𝐴 +ℎ 𝐵))) ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵
·ih 𝐵))) |
85 | | normval 29019 |
. . 3
⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ →
(normℎ‘(𝐴 +ℎ 𝐵)) = (√‘((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)))) |
86 | 65, 85 | ax-mp 5 |
. 2
⊢
(normℎ‘(𝐴 +ℎ 𝐵)) = (√‘((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵))) |
87 | | normval 29019 |
. . . 4
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴))) |
88 | 7, 87 | ax-mp 5 |
. . 3
⊢
(normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴)) |
89 | | normval 29019 |
. . . 4
⊢ (𝐵 ∈ ℋ →
(normℎ‘𝐵) = (√‘(𝐵 ·ih 𝐵))) |
90 | 6, 89 | ax-mp 5 |
. . 3
⊢
(normℎ‘𝐵) = (√‘(𝐵 ·ih 𝐵)) |
91 | 88, 90 | oveq12i 7168 |
. 2
⊢
((normℎ‘𝐴) + (normℎ‘𝐵)) = ((√‘(𝐴
·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))) |
92 | 84, 86, 91 | 3brtr4i 5066 |
1
⊢
(normℎ‘(𝐴 +ℎ 𝐵)) ≤
((normℎ‘𝐴) + (normℎ‘𝐵)) |