HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm-ii-i Structured version   Visualization version   GIF version

Theorem norm-ii-i 31166
Description: Triangle inequality for norms. Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm-ii.1 𝐴 ∈ ℋ
norm-ii.2 𝐵 ∈ ℋ
Assertion
Ref Expression
norm-ii-i (norm‘(𝐴 + 𝐵)) ≤ ((norm𝐴) + (norm𝐵))

Proof of Theorem norm-ii-i
StepHypRef Expression
1 1re 11259 . . . . . . . . . . 11 1 ∈ ℝ
2 ax-1cn 11211 . . . . . . . . . . . 12 1 ∈ ℂ
32cjrebi 15210 . . . . . . . . . . 11 (1 ∈ ℝ ↔ (∗‘1) = 1)
41, 3mpbi 230 . . . . . . . . . 10 (∗‘1) = 1
54oveq1i 7441 . . . . . . . . 9 ((∗‘1) · (𝐵 ·ih 𝐴)) = (1 · (𝐵 ·ih 𝐴))
6 norm-ii.2 . . . . . . . . . . 11 𝐵 ∈ ℋ
7 norm-ii.1 . . . . . . . . . . 11 𝐴 ∈ ℋ
86, 7hicli 31110 . . . . . . . . . 10 (𝐵 ·ih 𝐴) ∈ ℂ
98mullidi 11264 . . . . . . . . 9 (1 · (𝐵 ·ih 𝐴)) = (𝐵 ·ih 𝐴)
105, 9eqtri 2763 . . . . . . . 8 ((∗‘1) · (𝐵 ·ih 𝐴)) = (𝐵 ·ih 𝐴)
117, 6hicli 31110 . . . . . . . . 9 (𝐴 ·ih 𝐵) ∈ ℂ
1211mullidi 11264 . . . . . . . 8 (1 · (𝐴 ·ih 𝐵)) = (𝐴 ·ih 𝐵)
1310, 12oveq12i 7443 . . . . . . 7 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) = ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))
14 abs1 15333 . . . . . . . 8 (abs‘1) = 1
152, 6, 7, 14normlem7 31145 . . . . . . 7 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))
1613, 15eqbrtrri 5171 . . . . . 6 ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) ≤ (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))
17 eqid 2735 . . . . . . . . . 10 -(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) = -(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵)))
182, 6, 7, 17normlem2 31140 . . . . . . . . 9 -(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ
192cjcli 15205 . . . . . . . . . . . 12 (∗‘1) ∈ ℂ
2019, 8mulcli 11266 . . . . . . . . . . 11 ((∗‘1) · (𝐵 ·ih 𝐴)) ∈ ℂ
212, 11mulcli 11266 . . . . . . . . . . 11 (1 · (𝐴 ·ih 𝐵)) ∈ ℂ
2220, 21addcli 11265 . . . . . . . . . 10 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℂ
2322negrebi 11581 . . . . . . . . 9 (-(((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ ↔ (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ)
2418, 23mpbi 230 . . . . . . . 8 (((∗‘1) · (𝐵 ·ih 𝐴)) + (1 · (𝐴 ·ih 𝐵))) ∈ ℝ
2513, 24eqeltrri 2836 . . . . . . 7 ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) ∈ ℝ
26 2re 12338 . . . . . . . 8 2 ∈ ℝ
27 hiidge0 31127 . . . . . . . . . . 11 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
287, 27ax-mp 5 . . . . . . . . . 10 0 ≤ (𝐴 ·ih 𝐴)
29 hiidrcl 31124 . . . . . . . . . . . 12 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
307, 29ax-mp 5 . . . . . . . . . . 11 (𝐴 ·ih 𝐴) ∈ ℝ
3130sqrtcli 15407 . . . . . . . . . 10 (0 ≤ (𝐴 ·ih 𝐴) → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ)
3228, 31ax-mp 5 . . . . . . . . 9 (√‘(𝐴 ·ih 𝐴)) ∈ ℝ
33 hiidge0 31127 . . . . . . . . . . 11 (𝐵 ∈ ℋ → 0 ≤ (𝐵 ·ih 𝐵))
346, 33ax-mp 5 . . . . . . . . . 10 0 ≤ (𝐵 ·ih 𝐵)
35 hiidrcl 31124 . . . . . . . . . . . 12 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
366, 35ax-mp 5 . . . . . . . . . . 11 (𝐵 ·ih 𝐵) ∈ ℝ
3736sqrtcli 15407 . . . . . . . . . 10 (0 ≤ (𝐵 ·ih 𝐵) → (√‘(𝐵 ·ih 𝐵)) ∈ ℝ)
3834, 37ax-mp 5 . . . . . . . . 9 (√‘(𝐵 ·ih 𝐵)) ∈ ℝ
3932, 38remulcli 11275 . . . . . . . 8 ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))) ∈ ℝ
4026, 39remulcli 11275 . . . . . . 7 (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))) ∈ ℝ
4130, 36readdcli 11274 . . . . . . 7 ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈ ℝ
4225, 40, 41leadd2i 11817 . . . . . 6 (((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)) ≤ (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))) ↔ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))) ≤ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))))
4316, 42mpbi 230 . . . . 5 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))) ≤ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
447, 6, 7, 6normlem8 31146 . . . . . 6 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
4511, 8addcomi 11450 . . . . . . 7 ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵))
4645oveq2i 7442 . . . . . 6 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)))
4744, 46eqtri 2763 . . . . 5 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐵 ·ih 𝐴) + (𝐴 ·ih 𝐵)))
4832recni 11273 . . . . . . 7 (√‘(𝐴 ·ih 𝐴)) ∈ ℂ
4938recni 11273 . . . . . . 7 (√‘(𝐵 ·ih 𝐵)) ∈ ℂ
5048, 49binom2i 14248 . . . . . 6 (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) = ((((√‘(𝐴 ·ih 𝐴))↑2) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))) + ((√‘(𝐵 ·ih 𝐵))↑2))
5148sqcli 14217 . . . . . . 7 ((√‘(𝐴 ·ih 𝐴))↑2) ∈ ℂ
52 2cn 12339 . . . . . . . 8 2 ∈ ℂ
5348, 49mulcli 11266 . . . . . . . 8 ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))) ∈ ℂ
5452, 53mulcli 11266 . . . . . . 7 (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))) ∈ ℂ
5549sqcli 14217 . . . . . . 7 ((√‘(𝐵 ·ih 𝐵))↑2) ∈ ℂ
5651, 54, 55add32i 11483 . . . . . 6 ((((√‘(𝐴 ·ih 𝐴))↑2) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))) + ((√‘(𝐵 ·ih 𝐵))↑2)) = ((((√‘(𝐴 ·ih 𝐴))↑2) + ((√‘(𝐵 ·ih 𝐵))↑2)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
5730sqsqrti 15411 . . . . . . . . 9 (0 ≤ (𝐴 ·ih 𝐴) → ((√‘(𝐴 ·ih 𝐴))↑2) = (𝐴 ·ih 𝐴))
5828, 57ax-mp 5 . . . . . . . 8 ((√‘(𝐴 ·ih 𝐴))↑2) = (𝐴 ·ih 𝐴)
5936sqsqrti 15411 . . . . . . . . 9 (0 ≤ (𝐵 ·ih 𝐵) → ((√‘(𝐵 ·ih 𝐵))↑2) = (𝐵 ·ih 𝐵))
6034, 59ax-mp 5 . . . . . . . 8 ((√‘(𝐵 ·ih 𝐵))↑2) = (𝐵 ·ih 𝐵)
6158, 60oveq12i 7443 . . . . . . 7 (((√‘(𝐴 ·ih 𝐴))↑2) + ((√‘(𝐵 ·ih 𝐵))↑2)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))
6261oveq1i 7441 . . . . . 6 ((((√‘(𝐴 ·ih 𝐴))↑2) + ((√‘(𝐵 ·ih 𝐵))↑2)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵))))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
6350, 56, 623eqtri 2767 . . . . 5 (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + (2 · ((√‘(𝐴 ·ih 𝐴)) · (√‘(𝐵 ·ih 𝐵)))))
6443, 47, 633brtr4i 5178 . . . 4 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)
657, 6hvaddcli 31047 . . . . . 6 (𝐴 + 𝐵) ∈ ℋ
66 hiidge0 31127 . . . . . 6 ((𝐴 + 𝐵) ∈ ℋ → 0 ≤ ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
6765, 66ax-mp 5 . . . . 5 0 ≤ ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))
6832, 38readdcli 11274 . . . . . 6 ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))) ∈ ℝ
6968sqge0i 14224 . . . . 5 0 ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)
70 hiidrcl 31124 . . . . . . 7 ((𝐴 + 𝐵) ∈ ℋ → ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ∈ ℝ)
7165, 70ax-mp 5 . . . . . 6 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ∈ ℝ
7268resqcli 14222 . . . . . 6 (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) ∈ ℝ
7371, 72sqrtlei 15424 . . . . 5 ((0 ≤ ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ∧ 0 ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)) → (((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) ↔ (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2))))
7467, 69, 73mp2an 692 . . . 4 (((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) ≤ (((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2) ↔ (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)))
7564, 74mpbi 230 . . 3 (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2))
7630sqrtge0i 15412 . . . . . 6 (0 ≤ (𝐴 ·ih 𝐴) → 0 ≤ (√‘(𝐴 ·ih 𝐴)))
7728, 76ax-mp 5 . . . . 5 0 ≤ (√‘(𝐴 ·ih 𝐴))
7836sqrtge0i 15412 . . . . . 6 (0 ≤ (𝐵 ·ih 𝐵) → 0 ≤ (√‘(𝐵 ·ih 𝐵)))
7934, 78ax-mp 5 . . . . 5 0 ≤ (√‘(𝐵 ·ih 𝐵))
8032, 38addge0i 11801 . . . . 5 ((0 ≤ (√‘(𝐴 ·ih 𝐴)) ∧ 0 ≤ (√‘(𝐵 ·ih 𝐵))) → 0 ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))))
8177, 79, 80mp2an 692 . . . 4 0 ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
8268sqrtsqi 15410 . . . 4 (0 ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))) → (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)) = ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵))))
8381, 82ax-mp 5 . . 3 (√‘(((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))↑2)) = ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
8475, 83breqtri 5173 . 2 (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) ≤ ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
85 normval 31153 . . 3 ((𝐴 + 𝐵) ∈ ℋ → (norm‘(𝐴 + 𝐵)) = (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))))
8665, 85ax-mp 5 . 2 (norm‘(𝐴 + 𝐵)) = (√‘((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
87 normval 31153 . . . 4 (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))
887, 87ax-mp 5 . . 3 (norm𝐴) = (√‘(𝐴 ·ih 𝐴))
89 normval 31153 . . . 4 (𝐵 ∈ ℋ → (norm𝐵) = (√‘(𝐵 ·ih 𝐵)))
906, 89ax-mp 5 . . 3 (norm𝐵) = (√‘(𝐵 ·ih 𝐵))
9188, 90oveq12i 7443 . 2 ((norm𝐴) + (norm𝐵)) = ((√‘(𝐴 ·ih 𝐴)) + (√‘(𝐵 ·ih 𝐵)))
9284, 86, 913brtr4i 5178 1 (norm‘(𝐴 + 𝐵)) ≤ ((norm𝐴) + (norm𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cle 11294  -cneg 11491  2c2 12319  cexp 14099  ccj 15132  csqrt 15269  chba 30948   + cva 30949   ·ih csp 30951  normcno 30952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-hfvadd 31029  ax-hv0cl 31032  ax-hfvmul 31034  ax-hvmulass 31036  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-hnorm 30997  df-hvsub 31000
This theorem is referenced by:  norm-ii  31167  norm3difi  31176
  Copyright terms: Public domain W3C validator