| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iblmbf | Structured version Visualization version GIF version | ||
| Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| Ref | Expression |
|---|---|
| iblmbf | ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ibl 25556 | . . 3 ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | |
| 2 | 1 | ssrab3 4041 | . 2 ⊢ 𝐿1 ⊆ MblFn |
| 3 | 2 | sseli 3939 | 1 ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⦋csb 3859 ifcif 4484 class class class wbr 5102 ↦ cmpt 5183 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 ici 11046 ≤ cle 11185 / cdiv 11811 3c3 12218 ...cfz 13444 ↑cexp 14002 ℜcre 15039 MblFncmbf 25548 ∫2citg2 25550 𝐿1cibl 25551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-ss 3928 df-ibl 25556 |
| This theorem is referenced by: iblcnlem 25723 itgcnlem 25724 itgcnval 25734 itgre 25735 itgim 25736 iblneg 25737 itgneg 25738 iblss 25739 iblss2 25740 itgge0 25745 itgss3 25749 itgless 25751 iblsub 25756 itgadd 25759 itgsub 25760 itgfsum 25761 iblabs 25763 iblmulc2 25765 itgmulc2 25768 itgabs 25769 itgsplit 25770 bddmulibl 25773 itggt0 25778 itgcn 25779 ditgswap 25793 ditgsplitlem 25794 ftc1a 25977 itgsubstlem 25988 iblulm 26349 itgulm 26350 ibladdnc 37664 itgaddnclem1 37665 itgaddnclem2 37666 itgaddnc 37667 iblsubnc 37668 itgsubnc 37669 iblabsnclem 37670 iblabsnc 37671 iblmulc2nc 37672 itgmulc2nclem2 37674 itgmulc2nc 37675 itgabsnc 37676 ftc1cnnclem 37678 ftc1anclem2 37681 ftc1anclem4 37683 ftc1anclem5 37684 ftc1anclem6 37685 ftc1anclem8 37687 |
| Copyright terms: Public domain | W3C validator |