![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iblmbf | Structured version Visualization version GIF version |
Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
Ref | Expression |
---|---|
iblmbf | ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ibl 25670 | . . 3 ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | |
2 | 1 | ssrab3 4091 | . 2 ⊢ 𝐿1 ⊆ MblFn |
3 | 2 | sseli 3990 | 1 ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∀wral 3058 ⦋csb 3907 ifcif 4530 class class class wbr 5147 ↦ cmpt 5230 dom cdm 5688 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 0cc0 11152 ici 11154 ≤ cle 11293 / cdiv 11917 3c3 12319 ...cfz 13543 ↑cexp 14098 ℜcre 15132 MblFncmbf 25662 ∫2citg2 25664 𝐿1cibl 25665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-ss 3979 df-ibl 25670 |
This theorem is referenced by: iblcnlem 25838 itgcnlem 25839 itgcnval 25849 itgre 25850 itgim 25851 iblneg 25852 itgneg 25853 iblss 25854 iblss2 25855 itgge0 25860 itgss3 25864 itgless 25866 iblsub 25871 itgadd 25874 itgsub 25875 itgfsum 25876 iblabs 25878 iblmulc2 25880 itgmulc2 25883 itgabs 25884 itgsplit 25885 bddmulibl 25888 itggt0 25893 itgcn 25894 ditgswap 25908 ditgsplitlem 25909 ftc1a 26092 itgsubstlem 26103 iblulm 26464 itgulm 26465 ibladdnc 37663 itgaddnclem1 37664 itgaddnclem2 37665 itgaddnc 37666 iblsubnc 37667 itgsubnc 37668 iblabsnclem 37669 iblabsnc 37670 iblmulc2nc 37671 itgmulc2nclem2 37673 itgmulc2nc 37674 itgabsnc 37675 ftc1cnnclem 37677 ftc1anclem2 37680 ftc1anclem4 37682 ftc1anclem5 37683 ftc1anclem6 37684 ftc1anclem8 37686 |
Copyright terms: Public domain | W3C validator |