Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iblmbf | Structured version Visualization version GIF version |
Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
Ref | Expression |
---|---|
iblmbf | ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ibl 24691 | . . 3 ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | |
2 | 1 | ssrab3 4011 | . 2 ⊢ 𝐿1 ⊆ MblFn |
3 | 2 | sseli 3913 | 1 ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ⦋csb 3828 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 ici 10804 ≤ cle 10941 / cdiv 11562 3c3 11959 ...cfz 13168 ↑cexp 13710 ℜcre 14736 MblFncmbf 24683 ∫2citg2 24685 𝐿1cibl 24686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-ibl 24691 |
This theorem is referenced by: iblcnlem 24858 itgcnlem 24859 itgcnval 24869 itgre 24870 itgim 24871 iblneg 24872 itgneg 24873 iblss 24874 iblss2 24875 itgge0 24880 itgss3 24884 itgless 24886 iblsub 24891 itgadd 24894 itgsub 24895 itgfsum 24896 iblabs 24898 iblmulc2 24900 itgmulc2 24903 itgabs 24904 itgsplit 24905 bddmulibl 24908 itggt0 24913 itgcn 24914 ditgswap 24928 ditgsplitlem 24929 ftc1a 25106 itgsubstlem 25117 iblulm 25471 itgulm 25472 ibladdnc 35761 itgaddnclem1 35762 itgaddnclem2 35763 itgaddnc 35764 iblsubnc 35765 itgsubnc 35766 iblabsnclem 35767 iblabsnc 35768 iblmulc2nc 35769 itgmulc2nclem2 35771 itgmulc2nc 35772 itgabsnc 35773 ftc1cnnclem 35775 ftc1anclem2 35778 ftc1anclem4 35780 ftc1anclem5 35781 ftc1anclem6 35782 ftc1anclem8 35784 |
Copyright terms: Public domain | W3C validator |