MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblmbf Structured version   Visualization version   GIF version

Theorem iblmbf 25816
Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iblmbf (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)

Proof of Theorem iblmbf
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ibl 25670 . . 3 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ}
21ssrab3 4091 . 2 𝐿1 ⊆ MblFn
32sseli 3990 1 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wral 3058  csb 3907  ifcif 4530   class class class wbr 5147  cmpt 5230  dom cdm 5688  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  ici 11154  cle 11293   / cdiv 11917  3c3 12319  ...cfz 13543  cexp 14098  cre 15132  MblFncmbf 25662  2citg2 25664  𝐿1cibl 25665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-ss 3979  df-ibl 25670
This theorem is referenced by:  iblcnlem  25838  itgcnlem  25839  itgcnval  25849  itgre  25850  itgim  25851  iblneg  25852  itgneg  25853  iblss  25854  iblss2  25855  itgge0  25860  itgss3  25864  itgless  25866  iblsub  25871  itgadd  25874  itgsub  25875  itgfsum  25876  iblabs  25878  iblmulc2  25880  itgmulc2  25883  itgabs  25884  itgsplit  25885  bddmulibl  25888  itggt0  25893  itgcn  25894  ditgswap  25908  ditgsplitlem  25909  ftc1a  26092  itgsubstlem  26103  iblulm  26464  itgulm  26465  ibladdnc  37663  itgaddnclem1  37664  itgaddnclem2  37665  itgaddnc  37666  iblsubnc  37667  itgsubnc  37668  iblabsnclem  37669  iblabsnc  37670  iblmulc2nc  37671  itgmulc2nclem2  37673  itgmulc2nc  37674  itgabsnc  37675  ftc1cnnclem  37677  ftc1anclem2  37680  ftc1anclem4  37682  ftc1anclem5  37683  ftc1anclem6  37684  ftc1anclem8  37686
  Copyright terms: Public domain W3C validator