| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iblmbf | Structured version Visualization version GIF version | ||
| Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| Ref | Expression |
|---|---|
| iblmbf | ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ibl 25550 | . . 3 ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | |
| 2 | 1 | ssrab3 4029 | . 2 ⊢ 𝐿1 ⊆ MblFn |
| 3 | 2 | sseli 3925 | 1 ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ⦋csb 3845 ifcif 4472 class class class wbr 5089 ↦ cmpt 5170 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 ici 11008 ≤ cle 11147 / cdiv 11774 3c3 12181 ...cfz 13407 ↑cexp 13968 ℜcre 15004 MblFncmbf 25542 ∫2citg2 25544 𝐿1cibl 25545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3914 df-ibl 25550 |
| This theorem is referenced by: iblcnlem 25717 itgcnlem 25718 itgcnval 25728 itgre 25729 itgim 25730 iblneg 25731 itgneg 25732 iblss 25733 iblss2 25734 itgge0 25739 itgss3 25743 itgless 25745 iblsub 25750 itgadd 25753 itgsub 25754 itgfsum 25755 iblabs 25757 iblmulc2 25759 itgmulc2 25762 itgabs 25763 itgsplit 25764 bddmulibl 25767 itggt0 25772 itgcn 25773 ditgswap 25787 ditgsplitlem 25788 ftc1a 25971 itgsubstlem 25982 iblulm 26343 itgulm 26344 ibladdnc 37716 itgaddnclem1 37717 itgaddnclem2 37718 itgaddnc 37719 iblsubnc 37720 itgsubnc 37721 iblabsnclem 37722 iblabsnc 37723 iblmulc2nc 37724 itgmulc2nclem2 37726 itgmulc2nc 37727 itgabsnc 37728 ftc1cnnclem 37730 ftc1anclem2 37733 ftc1anclem4 37735 ftc1anclem5 37736 ftc1anclem6 37737 ftc1anclem8 37739 |
| Copyright terms: Public domain | W3C validator |