MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblmbf Structured version   Visualization version   GIF version

Theorem iblmbf 25822
Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iblmbf (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)

Proof of Theorem iblmbf
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ibl 25676 . . 3 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ}
21ssrab3 4105 . 2 𝐿1 ⊆ MblFn
32sseli 4004 1 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3067  csb 3921  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  ici 11186  cle 11325   / cdiv 11947  3c3 12349  ...cfz 13567  cexp 14112  cre 15146  MblFncmbf 25668  2citg2 25670  𝐿1cibl 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-ss 3993  df-ibl 25676
This theorem is referenced by:  iblcnlem  25844  itgcnlem  25845  itgcnval  25855  itgre  25856  itgim  25857  iblneg  25858  itgneg  25859  iblss  25860  iblss2  25861  itgge0  25866  itgss3  25870  itgless  25872  iblsub  25877  itgadd  25880  itgsub  25881  itgfsum  25882  iblabs  25884  iblmulc2  25886  itgmulc2  25889  itgabs  25890  itgsplit  25891  bddmulibl  25894  itggt0  25899  itgcn  25900  ditgswap  25914  ditgsplitlem  25915  ftc1a  26098  itgsubstlem  26109  iblulm  26468  itgulm  26469  ibladdnc  37637  itgaddnclem1  37638  itgaddnclem2  37639  itgaddnc  37640  iblsubnc  37641  itgsubnc  37642  iblabsnclem  37643  iblabsnc  37644  iblmulc2nc  37645  itgmulc2nclem2  37647  itgmulc2nc  37648  itgabsnc  37649  ftc1cnnclem  37651  ftc1anclem2  37654  ftc1anclem4  37656  ftc1anclem5  37657  ftc1anclem6  37658  ftc1anclem8  37660
  Copyright terms: Public domain W3C validator