| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iblmbf | Structured version Visualization version GIF version | ||
| Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| Ref | Expression |
|---|---|
| iblmbf | ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ibl 25521 | . . 3 ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | |
| 2 | 1 | ssrab3 4033 | . 2 ⊢ 𝐿1 ⊆ MblFn |
| 3 | 2 | sseli 3931 | 1 ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⦋csb 3851 ifcif 4476 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 0cc0 11009 ici 11011 ≤ cle 11150 / cdiv 11777 3c3 12184 ...cfz 13410 ↑cexp 13968 ℜcre 15004 MblFncmbf 25513 ∫2citg2 25515 𝐿1cibl 25516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-ss 3920 df-ibl 25521 |
| This theorem is referenced by: iblcnlem 25688 itgcnlem 25689 itgcnval 25699 itgre 25700 itgim 25701 iblneg 25702 itgneg 25703 iblss 25704 iblss2 25705 itgge0 25710 itgss3 25714 itgless 25716 iblsub 25721 itgadd 25724 itgsub 25725 itgfsum 25726 iblabs 25728 iblmulc2 25730 itgmulc2 25733 itgabs 25734 itgsplit 25735 bddmulibl 25738 itggt0 25743 itgcn 25744 ditgswap 25758 ditgsplitlem 25759 ftc1a 25942 itgsubstlem 25953 iblulm 26314 itgulm 26315 ibladdnc 37667 itgaddnclem1 37668 itgaddnclem2 37669 itgaddnc 37670 iblsubnc 37671 itgsubnc 37672 iblabsnclem 37673 iblabsnc 37674 iblmulc2nc 37675 itgmulc2nclem2 37677 itgmulc2nc 37678 itgabsnc 37679 ftc1cnnclem 37681 ftc1anclem2 37684 ftc1anclem4 37686 ftc1anclem5 37687 ftc1anclem6 37688 ftc1anclem8 37690 |
| Copyright terms: Public domain | W3C validator |