| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iblmbf | Structured version Visualization version GIF version | ||
| Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| Ref | Expression |
|---|---|
| iblmbf | ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ibl 25530 | . . 3 ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | |
| 2 | 1 | ssrab3 4048 | . 2 ⊢ 𝐿1 ⊆ MblFn |
| 3 | 2 | sseli 3945 | 1 ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ⦋csb 3865 ifcif 4491 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 ici 11077 ≤ cle 11216 / cdiv 11842 3c3 12249 ...cfz 13475 ↑cexp 14033 ℜcre 15070 MblFncmbf 25522 ∫2citg2 25524 𝐿1cibl 25525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-ss 3934 df-ibl 25530 |
| This theorem is referenced by: iblcnlem 25697 itgcnlem 25698 itgcnval 25708 itgre 25709 itgim 25710 iblneg 25711 itgneg 25712 iblss 25713 iblss2 25714 itgge0 25719 itgss3 25723 itgless 25725 iblsub 25730 itgadd 25733 itgsub 25734 itgfsum 25735 iblabs 25737 iblmulc2 25739 itgmulc2 25742 itgabs 25743 itgsplit 25744 bddmulibl 25747 itggt0 25752 itgcn 25753 ditgswap 25767 ditgsplitlem 25768 ftc1a 25951 itgsubstlem 25962 iblulm 26323 itgulm 26324 ibladdnc 37678 itgaddnclem1 37679 itgaddnclem2 37680 itgaddnc 37681 iblsubnc 37682 itgsubnc 37683 iblabsnclem 37684 iblabsnc 37685 iblmulc2nc 37686 itgmulc2nclem2 37688 itgmulc2nc 37689 itgabsnc 37690 ftc1cnnclem 37692 ftc1anclem2 37695 ftc1anclem4 37697 ftc1anclem5 37698 ftc1anclem6 37699 ftc1anclem8 37701 |
| Copyright terms: Public domain | W3C validator |