![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iblmbf | Structured version Visualization version GIF version |
Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
Ref | Expression |
---|---|
iblmbf | ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ibl 25676 | . . 3 ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | |
2 | 1 | ssrab3 4105 | . 2 ⊢ 𝐿1 ⊆ MblFn |
3 | 2 | sseli 4004 | 1 ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ⦋csb 3921 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 ici 11186 ≤ cle 11325 / cdiv 11947 3c3 12349 ...cfz 13567 ↑cexp 14112 ℜcre 15146 MblFncmbf 25668 ∫2citg2 25670 𝐿1cibl 25671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-ibl 25676 |
This theorem is referenced by: iblcnlem 25844 itgcnlem 25845 itgcnval 25855 itgre 25856 itgim 25857 iblneg 25858 itgneg 25859 iblss 25860 iblss2 25861 itgge0 25866 itgss3 25870 itgless 25872 iblsub 25877 itgadd 25880 itgsub 25881 itgfsum 25882 iblabs 25884 iblmulc2 25886 itgmulc2 25889 itgabs 25890 itgsplit 25891 bddmulibl 25894 itggt0 25899 itgcn 25900 ditgswap 25914 ditgsplitlem 25915 ftc1a 26098 itgsubstlem 26109 iblulm 26468 itgulm 26469 ibladdnc 37637 itgaddnclem1 37638 itgaddnclem2 37639 itgaddnc 37640 iblsubnc 37641 itgsubnc 37642 iblabsnclem 37643 iblabsnc 37644 iblmulc2nc 37645 itgmulc2nclem2 37647 itgmulc2nc 37648 itgabsnc 37649 ftc1cnnclem 37651 ftc1anclem2 37654 ftc1anclem4 37656 ftc1anclem5 37657 ftc1anclem6 37658 ftc1anclem8 37660 |
Copyright terms: Public domain | W3C validator |