| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iblmbf | Structured version Visualization version GIF version | ||
| Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| Ref | Expression |
|---|---|
| iblmbf | ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ibl 25575 | . . 3 ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | |
| 2 | 1 | ssrab3 4057 | . 2 ⊢ 𝐿1 ⊆ MblFn |
| 3 | 2 | sseli 3954 | 1 ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 ⦋csb 3874 ifcif 4500 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 ici 11131 ≤ cle 11270 / cdiv 11894 3c3 12296 ...cfz 13524 ↑cexp 14079 ℜcre 15116 MblFncmbf 25567 ∫2citg2 25569 𝐿1cibl 25570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-ss 3943 df-ibl 25575 |
| This theorem is referenced by: iblcnlem 25742 itgcnlem 25743 itgcnval 25753 itgre 25754 itgim 25755 iblneg 25756 itgneg 25757 iblss 25758 iblss2 25759 itgge0 25764 itgss3 25768 itgless 25770 iblsub 25775 itgadd 25778 itgsub 25779 itgfsum 25780 iblabs 25782 iblmulc2 25784 itgmulc2 25787 itgabs 25788 itgsplit 25789 bddmulibl 25792 itggt0 25797 itgcn 25798 ditgswap 25812 ditgsplitlem 25813 ftc1a 25996 itgsubstlem 26007 iblulm 26368 itgulm 26369 ibladdnc 37701 itgaddnclem1 37702 itgaddnclem2 37703 itgaddnc 37704 iblsubnc 37705 itgsubnc 37706 iblabsnclem 37707 iblabsnc 37708 iblmulc2nc 37709 itgmulc2nclem2 37711 itgmulc2nc 37712 itgabsnc 37713 ftc1cnnclem 37715 ftc1anclem2 37718 ftc1anclem4 37720 ftc1anclem5 37721 ftc1anclem6 37722 ftc1anclem8 37724 |
| Copyright terms: Public domain | W3C validator |