| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iblmbf | Structured version Visualization version GIF version | ||
| Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| Ref | Expression |
|---|---|
| iblmbf | ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ibl 25523 | . . 3 ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | |
| 2 | 1 | ssrab3 4045 | . 2 ⊢ 𝐿1 ⊆ MblFn |
| 3 | 2 | sseli 3942 | 1 ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⦋csb 3862 ifcif 4488 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 ici 11070 ≤ cle 11209 / cdiv 11835 3c3 12242 ...cfz 13468 ↑cexp 14026 ℜcre 15063 MblFncmbf 25515 ∫2citg2 25517 𝐿1cibl 25518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-ss 3931 df-ibl 25523 |
| This theorem is referenced by: iblcnlem 25690 itgcnlem 25691 itgcnval 25701 itgre 25702 itgim 25703 iblneg 25704 itgneg 25705 iblss 25706 iblss2 25707 itgge0 25712 itgss3 25716 itgless 25718 iblsub 25723 itgadd 25726 itgsub 25727 itgfsum 25728 iblabs 25730 iblmulc2 25732 itgmulc2 25735 itgabs 25736 itgsplit 25737 bddmulibl 25740 itggt0 25745 itgcn 25746 ditgswap 25760 ditgsplitlem 25761 ftc1a 25944 itgsubstlem 25955 iblulm 26316 itgulm 26317 ibladdnc 37671 itgaddnclem1 37672 itgaddnclem2 37673 itgaddnc 37674 iblsubnc 37675 itgsubnc 37676 iblabsnclem 37677 iblabsnc 37678 iblmulc2nc 37679 itgmulc2nclem2 37681 itgmulc2nc 37682 itgabsnc 37683 ftc1cnnclem 37685 ftc1anclem2 37688 ftc1anclem4 37690 ftc1anclem5 37691 ftc1anclem6 37692 ftc1anclem8 37694 |
| Copyright terms: Public domain | W3C validator |