MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblmbf Structured version   Visualization version   GIF version

Theorem iblmbf 25738
Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iblmbf (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)

Proof of Theorem iblmbf
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ibl 25593 . . 3 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ}
21ssrab3 4062 . 2 𝐿1 ⊆ MblFn
32sseli 3959 1 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wral 3050  csb 3879  ifcif 4505   class class class wbr 5123  cmpt 5205  dom cdm 5665  cfv 6541  (class class class)co 7413  cr 11136  0cc0 11137  ici 11139  cle 11278   / cdiv 11902  3c3 12304  ...cfz 13529  cexp 14084  cre 15118  MblFncmbf 25585  2citg2 25587  𝐿1cibl 25588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-ss 3948  df-ibl 25593
This theorem is referenced by:  iblcnlem  25760  itgcnlem  25761  itgcnval  25771  itgre  25772  itgim  25773  iblneg  25774  itgneg  25775  iblss  25776  iblss2  25777  itgge0  25782  itgss3  25786  itgless  25788  iblsub  25793  itgadd  25796  itgsub  25797  itgfsum  25798  iblabs  25800  iblmulc2  25802  itgmulc2  25805  itgabs  25806  itgsplit  25807  bddmulibl  25810  itggt0  25815  itgcn  25816  ditgswap  25830  ditgsplitlem  25831  ftc1a  26014  itgsubstlem  26025  iblulm  26386  itgulm  26387  ibladdnc  37643  itgaddnclem1  37644  itgaddnclem2  37645  itgaddnc  37646  iblsubnc  37647  itgsubnc  37648  iblabsnclem  37649  iblabsnc  37650  iblmulc2nc  37651  itgmulc2nclem2  37653  itgmulc2nc  37654  itgabsnc  37655  ftc1cnnclem  37657  ftc1anclem2  37660  ftc1anclem4  37662  ftc1anclem5  37663  ftc1anclem6  37664  ftc1anclem8  37666
  Copyright terms: Public domain W3C validator