MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblmbf Structured version   Visualization version   GIF version

Theorem iblmbf 24837
Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iblmbf (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)

Proof of Theorem iblmbf
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ibl 24691 . . 3 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ}
21ssrab3 4011 . 2 𝐿1 ⊆ MblFn
32sseli 3913 1 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3063  csb 3828  ifcif 4456   class class class wbr 5070  cmpt 5153  dom cdm 5580  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  ici 10804  cle 10941   / cdiv 11562  3c3 11959  ...cfz 13168  cexp 13710  cre 14736  MblFncmbf 24683  2citg2 24685  𝐿1cibl 24686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-ibl 24691
This theorem is referenced by:  iblcnlem  24858  itgcnlem  24859  itgcnval  24869  itgre  24870  itgim  24871  iblneg  24872  itgneg  24873  iblss  24874  iblss2  24875  itgge0  24880  itgss3  24884  itgless  24886  iblsub  24891  itgadd  24894  itgsub  24895  itgfsum  24896  iblabs  24898  iblmulc2  24900  itgmulc2  24903  itgabs  24904  itgsplit  24905  bddmulibl  24908  itggt0  24913  itgcn  24914  ditgswap  24928  ditgsplitlem  24929  ftc1a  25106  itgsubstlem  25117  iblulm  25471  itgulm  25472  ibladdnc  35761  itgaddnclem1  35762  itgaddnclem2  35763  itgaddnc  35764  iblsubnc  35765  itgsubnc  35766  iblabsnclem  35767  iblabsnc  35768  iblmulc2nc  35769  itgmulc2nclem2  35771  itgmulc2nc  35772  itgabsnc  35773  ftc1cnnclem  35775  ftc1anclem2  35778  ftc1anclem4  35780  ftc1anclem5  35781  ftc1anclem6  35782  ftc1anclem8  35784
  Copyright terms: Public domain W3C validator