MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblmbf Structured version   Visualization version   GIF version

Theorem iblmbf 25701
Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iblmbf (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)

Proof of Theorem iblmbf
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ibl 25556 . . 3 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ}
21ssrab3 4041 . 2 𝐿1 ⊆ MblFn
32sseli 3939 1 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  csb 3859  ifcif 4484   class class class wbr 5102  cmpt 5183  dom cdm 5631  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  ici 11046  cle 11185   / cdiv 11811  3c3 12218  ...cfz 13444  cexp 14002  cre 15039  MblFncmbf 25548  2citg2 25550  𝐿1cibl 25551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-ss 3928  df-ibl 25556
This theorem is referenced by:  iblcnlem  25723  itgcnlem  25724  itgcnval  25734  itgre  25735  itgim  25736  iblneg  25737  itgneg  25738  iblss  25739  iblss2  25740  itgge0  25745  itgss3  25749  itgless  25751  iblsub  25756  itgadd  25759  itgsub  25760  itgfsum  25761  iblabs  25763  iblmulc2  25765  itgmulc2  25768  itgabs  25769  itgsplit  25770  bddmulibl  25773  itggt0  25778  itgcn  25779  ditgswap  25793  ditgsplitlem  25794  ftc1a  25977  itgsubstlem  25988  iblulm  26349  itgulm  26350  ibladdnc  37664  itgaddnclem1  37665  itgaddnclem2  37666  itgaddnc  37667  iblsubnc  37668  itgsubnc  37669  iblabsnclem  37670  iblabsnc  37671  iblmulc2nc  37672  itgmulc2nclem2  37674  itgmulc2nc  37675  itgabsnc  37676  ftc1cnnclem  37678  ftc1anclem2  37681  ftc1anclem4  37683  ftc1anclem5  37684  ftc1anclem6  37685  ftc1anclem8  37687
  Copyright terms: Public domain W3C validator