| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iblmbf | Structured version Visualization version GIF version | ||
| Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| Ref | Expression |
|---|---|
| iblmbf | ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ibl 25593 | . . 3 ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | |
| 2 | 1 | ssrab3 4062 | . 2 ⊢ 𝐿1 ⊆ MblFn |
| 3 | 2 | sseli 3959 | 1 ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ⦋csb 3879 ifcif 4505 class class class wbr 5123 ↦ cmpt 5205 dom cdm 5665 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 0cc0 11137 ici 11139 ≤ cle 11278 / cdiv 11902 3c3 12304 ...cfz 13529 ↑cexp 14084 ℜcre 15118 MblFncmbf 25585 ∫2citg2 25587 𝐿1cibl 25588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-ss 3948 df-ibl 25593 |
| This theorem is referenced by: iblcnlem 25760 itgcnlem 25761 itgcnval 25771 itgre 25772 itgim 25773 iblneg 25774 itgneg 25775 iblss 25776 iblss2 25777 itgge0 25782 itgss3 25786 itgless 25788 iblsub 25793 itgadd 25796 itgsub 25797 itgfsum 25798 iblabs 25800 iblmulc2 25802 itgmulc2 25805 itgabs 25806 itgsplit 25807 bddmulibl 25810 itggt0 25815 itgcn 25816 ditgswap 25830 ditgsplitlem 25831 ftc1a 26014 itgsubstlem 26025 iblulm 26386 itgulm 26387 ibladdnc 37643 itgaddnclem1 37644 itgaddnclem2 37645 itgaddnc 37646 iblsubnc 37647 itgsubnc 37648 iblabsnclem 37649 iblabsnc 37650 iblmulc2nc 37651 itgmulc2nclem2 37653 itgmulc2nc 37654 itgabsnc 37655 ftc1cnnclem 37657 ftc1anclem2 37660 ftc1anclem4 37662 ftc1anclem5 37663 ftc1anclem6 37664 ftc1anclem8 37666 |
| Copyright terms: Public domain | W3C validator |