MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblmbf Structured version   Visualization version   GIF version

Theorem iblmbf 24932
Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iblmbf (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)

Proof of Theorem iblmbf
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ibl 24786 . . 3 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ}
21ssrab3 4015 . 2 𝐿1 ⊆ MblFn
32sseli 3917 1 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064  csb 3832  ifcif 4459   class class class wbr 5074  cmpt 5157  dom cdm 5589  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  ici 10873  cle 11010   / cdiv 11632  3c3 12029  ...cfz 13239  cexp 13782  cre 14808  MblFncmbf 24778  2citg2 24780  𝐿1cibl 24781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-ibl 24786
This theorem is referenced by:  iblcnlem  24953  itgcnlem  24954  itgcnval  24964  itgre  24965  itgim  24966  iblneg  24967  itgneg  24968  iblss  24969  iblss2  24970  itgge0  24975  itgss3  24979  itgless  24981  iblsub  24986  itgadd  24989  itgsub  24990  itgfsum  24991  iblabs  24993  iblmulc2  24995  itgmulc2  24998  itgabs  24999  itgsplit  25000  bddmulibl  25003  itggt0  25008  itgcn  25009  ditgswap  25023  ditgsplitlem  25024  ftc1a  25201  itgsubstlem  25212  iblulm  25566  itgulm  25567  ibladdnc  35834  itgaddnclem1  35835  itgaddnclem2  35836  itgaddnc  35837  iblsubnc  35838  itgsubnc  35839  iblabsnclem  35840  iblabsnc  35841  iblmulc2nc  35842  itgmulc2nclem2  35844  itgmulc2nc  35845  itgabsnc  35846  ftc1cnnclem  35848  ftc1anclem2  35851  ftc1anclem4  35853  ftc1anclem5  35854  ftc1anclem6  35855  ftc1anclem8  35857
  Copyright terms: Public domain W3C validator