Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iblmbf | Structured version Visualization version GIF version |
Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
Ref | Expression |
---|---|
iblmbf | ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ibl 24797 | . . 3 ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | |
2 | 1 | ssrab3 4020 | . 2 ⊢ 𝐿1 ⊆ MblFn |
3 | 2 | sseli 3922 | 1 ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 ∀wral 3066 ⦋csb 3837 ifcif 4465 class class class wbr 5079 ↦ cmpt 5162 dom cdm 5590 ‘cfv 6432 (class class class)co 7272 ℝcr 10881 0cc0 10882 ici 10884 ≤ cle 11021 / cdiv 11643 3c3 12040 ...cfz 13250 ↑cexp 13793 ℜcre 14819 MblFncmbf 24789 ∫2citg2 24791 𝐿1cibl 24792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-in 3899 df-ss 3909 df-ibl 24797 |
This theorem is referenced by: iblcnlem 24964 itgcnlem 24965 itgcnval 24975 itgre 24976 itgim 24977 iblneg 24978 itgneg 24979 iblss 24980 iblss2 24981 itgge0 24986 itgss3 24990 itgless 24992 iblsub 24997 itgadd 25000 itgsub 25001 itgfsum 25002 iblabs 25004 iblmulc2 25006 itgmulc2 25009 itgabs 25010 itgsplit 25011 bddmulibl 25014 itggt0 25019 itgcn 25020 ditgswap 25034 ditgsplitlem 25035 ftc1a 25212 itgsubstlem 25223 iblulm 25577 itgulm 25578 ibladdnc 35843 itgaddnclem1 35844 itgaddnclem2 35845 itgaddnc 35846 iblsubnc 35847 itgsubnc 35848 iblabsnclem 35849 iblabsnc 35850 iblmulc2nc 35851 itgmulc2nclem2 35853 itgmulc2nc 35854 itgabsnc 35855 ftc1cnnclem 35857 ftc1anclem2 35860 ftc1anclem4 35862 ftc1anclem5 35863 ftc1anclem6 35864 ftc1anclem8 35866 |
Copyright terms: Public domain | W3C validator |