MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblmbf Structured version   Visualization version   GIF version

Theorem iblmbf 25509
Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iblmbf (š¹ āˆˆ šæ1 ā†’ š¹ āˆˆ MblFn)

Proof of Theorem iblmbf
Dummy variables š‘“ š‘˜ š‘„ š‘¦ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ibl 25363 . . 3 šæ1 = {š‘“ āˆˆ MblFn āˆ£ āˆ€š‘˜ āˆˆ (0...3)(āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ ā¦‹(ā„œā€˜((š‘“ā€˜š‘„) / (iā†‘š‘˜))) / š‘¦ā¦Œif((š‘„ āˆˆ dom š‘“ āˆ§ 0 ā‰¤ š‘¦), š‘¦, 0))) āˆˆ ā„}
21ssrab3 4080 . 2 šæ1 āŠ† MblFn
32sseli 3978 1 (š¹ āˆˆ šæ1 ā†’ š¹ āˆˆ MblFn)
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   āˆ§ wa 396   āˆˆ wcel 2106  āˆ€wral 3061  ā¦‹csb 3893  ifcif 4528   class class class wbr 5148   ā†¦ cmpt 5231  dom cdm 5676  ā€˜cfv 6543  (class class class)co 7411  ā„cr 11111  0cc0 11112  ici 11114   ā‰¤ cle 11253   / cdiv 11875  3c3 12272  ...cfz 13488  ā†‘cexp 14031  ā„œcre 15048  MblFncmbf 25355  āˆ«2citg2 25357  šæ1cibl 25358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-in 3955  df-ss 3965  df-ibl 25363
This theorem is referenced by:  iblcnlem  25530  itgcnlem  25531  itgcnval  25541  itgre  25542  itgim  25543  iblneg  25544  itgneg  25545  iblss  25546  iblss2  25547  itgge0  25552  itgss3  25556  itgless  25558  iblsub  25563  itgadd  25566  itgsub  25567  itgfsum  25568  iblabs  25570  iblmulc2  25572  itgmulc2  25575  itgabs  25576  itgsplit  25577  bddmulibl  25580  itggt0  25585  itgcn  25586  ditgswap  25600  ditgsplitlem  25601  ftc1a  25778  itgsubstlem  25789  iblulm  26143  itgulm  26144  ibladdnc  36848  itgaddnclem1  36849  itgaddnclem2  36850  itgaddnc  36851  iblsubnc  36852  itgsubnc  36853  iblabsnclem  36854  iblabsnc  36855  iblmulc2nc  36856  itgmulc2nclem2  36858  itgmulc2nc  36859  itgabsnc  36860  ftc1cnnclem  36862  ftc1anclem2  36865  ftc1anclem4  36867  ftc1anclem5  36868  ftc1anclem6  36869  ftc1anclem8  36871
  Copyright terms: Public domain W3C validator