Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iblmbf | Structured version Visualization version GIF version |
Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
Ref | Expression |
---|---|
iblmbf | ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ibl 24786 | . . 3 ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | |
2 | 1 | ssrab3 4015 | . 2 ⊢ 𝐿1 ⊆ MblFn |
3 | 2 | sseli 3917 | 1 ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ⦋csb 3832 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 ici 10873 ≤ cle 11010 / cdiv 11632 3c3 12029 ...cfz 13239 ↑cexp 13782 ℜcre 14808 MblFncmbf 24778 ∫2citg2 24780 𝐿1cibl 24781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-ibl 24786 |
This theorem is referenced by: iblcnlem 24953 itgcnlem 24954 itgcnval 24964 itgre 24965 itgim 24966 iblneg 24967 itgneg 24968 iblss 24969 iblss2 24970 itgge0 24975 itgss3 24979 itgless 24981 iblsub 24986 itgadd 24989 itgsub 24990 itgfsum 24991 iblabs 24993 iblmulc2 24995 itgmulc2 24998 itgabs 24999 itgsplit 25000 bddmulibl 25003 itggt0 25008 itgcn 25009 ditgswap 25023 ditgsplitlem 25024 ftc1a 25201 itgsubstlem 25212 iblulm 25566 itgulm 25567 ibladdnc 35834 itgaddnclem1 35835 itgaddnclem2 35836 itgaddnc 35837 iblsubnc 35838 itgsubnc 35839 iblabsnclem 35840 iblabsnc 35841 iblmulc2nc 35842 itgmulc2nclem2 35844 itgmulc2nc 35845 itgabsnc 35846 ftc1cnnclem 35848 ftc1anclem2 35851 ftc1anclem4 35853 ftc1anclem5 35854 ftc1anclem6 35855 ftc1anclem8 35857 |
Copyright terms: Public domain | W3C validator |