MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isibl Structured version   Visualization version   GIF version

Theorem isibl 25693
Description: The predicate "𝐹 is integrable". The "integrable" predicate corresponds roughly to the range of validity of 𝐴𝐵 d𝑥, which is to say that the expression 𝐴𝐵 d𝑥 doesn't make sense unless (𝑥𝐴𝐵) ∈ 𝐿1. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
isibl.1 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
isibl.2 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))))
isibl.3 (𝜑 → dom 𝐹 = 𝐴)
isibl.4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Assertion
Ref Expression
isibl (𝜑 → (𝐹 ∈ 𝐿1 ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘   𝑘,𝐹,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥,𝑘)   𝐺(𝑥,𝑘)

Proof of Theorem isibl
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6835 . . . . . . . . 9 (ℜ‘((𝑓𝑥) / (i↑𝑘))) ∈ V
2 breq2 5093 . . . . . . . . . . 11 (𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))) → (0 ≤ 𝑦 ↔ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))))
32anbi2d 630 . . . . . . . . . 10 (𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))) → ((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦) ↔ (𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘))))))
4 id 22 . . . . . . . . . 10 (𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))) → 𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))))
53, 4ifbieq1d 4497 . . . . . . . . 9 (𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))) → if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))), (ℜ‘((𝑓𝑥) / (i↑𝑘))), 0))
61, 5csbie 3880 . . . . . . . 8 (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))), (ℜ‘((𝑓𝑥) / (i↑𝑘))), 0)
7 dmeq 5842 . . . . . . . . . . 11 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
87eleq2d 2817 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑥 ∈ dom 𝑓𝑥 ∈ dom 𝐹))
9 fveq1 6821 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
109fvoveq1d 7368 . . . . . . . . . . 11 (𝑓 = 𝐹 → (ℜ‘((𝑓𝑥) / (i↑𝑘))) = (ℜ‘((𝐹𝑥) / (i↑𝑘))))
1110breq2d 5101 . . . . . . . . . 10 (𝑓 = 𝐹 → (0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘))) ↔ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))))
128, 11anbi12d 632 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))) ↔ (𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘))))))
1312, 10ifbieq1d 4497 . . . . . . . 8 (𝑓 = 𝐹 → if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))), (ℜ‘((𝑓𝑥) / (i↑𝑘))), 0) = if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))
146, 13eqtrid 2778 . . . . . . 7 (𝑓 = 𝐹(ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))
1514mpteq2dv 5183 . . . . . 6 (𝑓 = 𝐹 → (𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0)))
1615fveq2d 6826 . . . . 5 (𝑓 = 𝐹 → (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))))
1716eleq1d 2816 . . . 4 (𝑓 = 𝐹 → ((∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ))
1817ralbidv 3155 . . 3 (𝑓 = 𝐹 → (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ ↔ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ))
19 df-ibl 25550 . . 3 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ}
2018, 19elrab2 3645 . 2 (𝐹 ∈ 𝐿1 ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ))
21 isibl.3 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐴)
2221eleq2d 2817 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝐴))
2322anbi1d 631 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘))))))
2423ifbid 4496 . . . . . . . . 9 (𝜑 → if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))
25 isibl.4 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
2625fvoveq1d 7368 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (ℜ‘((𝐹𝑥) / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
27 isibl.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))))
2826, 27eqtr4d 2769 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (ℜ‘((𝐹𝑥) / (i↑𝑘))) = 𝑇)
2928ibllem 25692 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
3024, 29eqtrd 2766 . . . . . . . 8 (𝜑 → if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
3130mpteq2dv 5183 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
32 isibl.1 . . . . . . 7 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
3331, 32eqtr4d 2769 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0)) = 𝐺)
3433fveq2d 6826 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) = (∫2𝐺))
3534eleq1d 2816 . . . 4 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2𝐺) ∈ ℝ))
3635ralbidv 3155 . . 3 (𝜑 → (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ ↔ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ))
3736anbi2d 630 . 2 (𝜑 → ((𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ) ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
3820, 37bitrid 283 1 (𝜑 → (𝐹 ∈ 𝐿1 ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  csb 3845  ifcif 4472   class class class wbr 5089  cmpt 5170  dom cdm 5614  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  ici 11008  cle 11147   / cdiv 11774  3c3 12181  ...cfz 13407  cexp 13968  cre 15004  MblFncmbf 25542  2citg2 25544  𝐿1cibl 25545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-dm 5624  df-iota 6437  df-fv 6489  df-ov 7349  df-ibl 25550
This theorem is referenced by:  isibl2  25694  ibl0  25715  iblempty  46073
  Copyright terms: Public domain W3C validator