MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isibl Structured version   Visualization version   GIF version

Theorem isibl 25664
Description: The predicate "𝐹 is integrable". The "integrable" predicate corresponds roughly to the range of validity of 𝐴𝐵 d𝑥, which is to say that the expression 𝐴𝐵 d𝑥 doesn't make sense unless (𝑥𝐴𝐵) ∈ 𝐿1. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
isibl.1 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
isibl.2 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))))
isibl.3 (𝜑 → dom 𝐹 = 𝐴)
isibl.4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Assertion
Ref Expression
isibl (𝜑 → (𝐹 ∈ 𝐿1 ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘   𝑘,𝐹,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥,𝑘)   𝐺(𝑥,𝑘)

Proof of Theorem isibl
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6835 . . . . . . . . 9 (ℜ‘((𝑓𝑥) / (i↑𝑘))) ∈ V
2 breq2 5096 . . . . . . . . . . 11 (𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))) → (0 ≤ 𝑦 ↔ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))))
32anbi2d 630 . . . . . . . . . 10 (𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))) → ((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦) ↔ (𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘))))))
4 id 22 . . . . . . . . . 10 (𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))) → 𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))))
53, 4ifbieq1d 4501 . . . . . . . . 9 (𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))) → if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))), (ℜ‘((𝑓𝑥) / (i↑𝑘))), 0))
61, 5csbie 3886 . . . . . . . 8 (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))), (ℜ‘((𝑓𝑥) / (i↑𝑘))), 0)
7 dmeq 5846 . . . . . . . . . . 11 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
87eleq2d 2814 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑥 ∈ dom 𝑓𝑥 ∈ dom 𝐹))
9 fveq1 6821 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
109fvoveq1d 7371 . . . . . . . . . . 11 (𝑓 = 𝐹 → (ℜ‘((𝑓𝑥) / (i↑𝑘))) = (ℜ‘((𝐹𝑥) / (i↑𝑘))))
1110breq2d 5104 . . . . . . . . . 10 (𝑓 = 𝐹 → (0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘))) ↔ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))))
128, 11anbi12d 632 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))) ↔ (𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘))))))
1312, 10ifbieq1d 4501 . . . . . . . 8 (𝑓 = 𝐹 → if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))), (ℜ‘((𝑓𝑥) / (i↑𝑘))), 0) = if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))
146, 13eqtrid 2776 . . . . . . 7 (𝑓 = 𝐹(ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))
1514mpteq2dv 5186 . . . . . 6 (𝑓 = 𝐹 → (𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0)))
1615fveq2d 6826 . . . . 5 (𝑓 = 𝐹 → (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))))
1716eleq1d 2813 . . . 4 (𝑓 = 𝐹 → ((∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ))
1817ralbidv 3152 . . 3 (𝑓 = 𝐹 → (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ ↔ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ))
19 df-ibl 25521 . . 3 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ}
2018, 19elrab2 3651 . 2 (𝐹 ∈ 𝐿1 ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ))
21 isibl.3 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐴)
2221eleq2d 2814 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝐴))
2322anbi1d 631 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘))))))
2423ifbid 4500 . . . . . . . . 9 (𝜑 → if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))
25 isibl.4 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
2625fvoveq1d 7371 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (ℜ‘((𝐹𝑥) / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
27 isibl.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))))
2826, 27eqtr4d 2767 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (ℜ‘((𝐹𝑥) / (i↑𝑘))) = 𝑇)
2928ibllem 25663 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
3024, 29eqtrd 2764 . . . . . . . 8 (𝜑 → if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
3130mpteq2dv 5186 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
32 isibl.1 . . . . . . 7 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
3331, 32eqtr4d 2767 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0)) = 𝐺)
3433fveq2d 6826 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) = (∫2𝐺))
3534eleq1d 2813 . . . 4 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2𝐺) ∈ ℝ))
3635ralbidv 3152 . . 3 (𝜑 → (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ ↔ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ))
3736anbi2d 630 . 2 (𝜑 → ((𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ) ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
3820, 37bitrid 283 1 (𝜑 → (𝐹 ∈ 𝐿1 ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  csb 3851  ifcif 4476   class class class wbr 5092  cmpt 5173  dom cdm 5619  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  ici 11011  cle 11150   / cdiv 11777  3c3 12184  ...cfz 13410  cexp 13968  cre 15004  MblFncmbf 25513  2citg2 25515  𝐿1cibl 25516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5245
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-dm 5629  df-iota 6438  df-fv 6490  df-ov 7352  df-ibl 25521
This theorem is referenced by:  isibl2  25665  ibl0  25686  iblempty  45946
  Copyright terms: Public domain W3C validator