Step | Hyp | Ref
| Expression |
1 | | fvex 6769 |
. . . . . . . . 9
⊢
(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) ∈ V |
2 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑦 = (ℜ‘((𝑓‘𝑥) / (i↑𝑘))) → (0 ≤ 𝑦 ↔ 0 ≤ (ℜ‘((𝑓‘𝑥) / (i↑𝑘))))) |
3 | 2 | anbi2d 628 |
. . . . . . . . . 10
⊢ (𝑦 = (ℜ‘((𝑓‘𝑥) / (i↑𝑘))) → ((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦) ↔ (𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓‘𝑥) / (i↑𝑘)))))) |
4 | | id 22 |
. . . . . . . . . 10
⊢ (𝑦 = (ℜ‘((𝑓‘𝑥) / (i↑𝑘))) → 𝑦 = (ℜ‘((𝑓‘𝑥) / (i↑𝑘)))) |
5 | 3, 4 | ifbieq1d 4480 |
. . . . . . . . 9
⊢ (𝑦 = (ℜ‘((𝑓‘𝑥) / (i↑𝑘))) → if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓‘𝑥) / (i↑𝑘)))), (ℜ‘((𝑓‘𝑥) / (i↑𝑘))), 0)) |
6 | 1, 5 | csbie 3864 |
. . . . . . . 8
⊢
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓‘𝑥) / (i↑𝑘)))), (ℜ‘((𝑓‘𝑥) / (i↑𝑘))), 0) |
7 | | dmeq 5801 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) |
8 | 7 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑥 ∈ dom 𝑓 ↔ 𝑥 ∈ dom 𝐹)) |
9 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
10 | 9 | fvoveq1d 7277 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (ℜ‘((𝑓‘𝑥) / (i↑𝑘))) = (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))) |
11 | 10 | breq2d 5082 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (0 ≤ (ℜ‘((𝑓‘𝑥) / (i↑𝑘))) ↔ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘))))) |
12 | 8, 11 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓‘𝑥) / (i↑𝑘)))) ↔ (𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))))) |
13 | 12, 10 | ifbieq1d 4480 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓‘𝑥) / (i↑𝑘)))), (ℜ‘((𝑓‘𝑥) / (i↑𝑘))), 0) = if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0)) |
14 | 6, 13 | syl5eq 2791 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0)) |
15 | 14 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0))) |
16 | 15 | fveq2d 6760 |
. . . . 5
⊢ (𝑓 = 𝐹 → (∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ dom 𝐹 ∧ 0 ≤
(ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0)))) |
17 | 16 | eleq1d 2823 |
. . . 4
⊢ (𝑓 = 𝐹 → ((∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ ↔
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0))) ∈ ℝ)) |
18 | 17 | ralbidv 3120 |
. . 3
⊢ (𝑓 = 𝐹 → (∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ ↔ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0))) ∈ ℝ)) |
19 | | df-ibl 24691 |
. . 3
⊢
𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} |
20 | 18, 19 | elrab2 3620 |
. 2
⊢ (𝐹 ∈ 𝐿1
↔ (𝐹 ∈ MblFn
∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0))) ∈ ℝ)) |
21 | | isibl.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐹 = 𝐴) |
22 | 21 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴)) |
23 | 22 | anbi1d 629 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))) ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))))) |
24 | 23 | ifbid 4479 |
. . . . . . . . 9
⊢ (𝜑 → if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0)) |
25 | | isibl.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
26 | 25 | fvoveq1d 7277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐹‘𝑥) / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))) |
27 | | isibl.2 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))) |
28 | 26, 27 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐹‘𝑥) / (i↑𝑘))) = 𝑇) |
29 | 28 | ibllem 24834 |
. . . . . . . . 9
⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)) |
30 | 24, 29 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)) |
31 | 30 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) |
32 | | isibl.1 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) |
33 | 31, 32 | eqtr4d 2781 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0)) = 𝐺) |
34 | 33 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0))) = (∫2‘𝐺)) |
35 | 34 | eleq1d 2823 |
. . . 4
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0))) ∈ ℝ ↔
(∫2‘𝐺)
∈ ℝ)) |
36 | 35 | ralbidv 3120 |
. . 3
⊢ (𝜑 → (∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0))) ∈ ℝ ↔ ∀𝑘 ∈
(0...3)(∫2‘𝐺) ∈ ℝ)) |
37 | 36 | anbi2d 628 |
. 2
⊢ (𝜑 → ((𝐹 ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹‘𝑥) / (i↑𝑘)))), (ℜ‘((𝐹‘𝑥) / (i↑𝑘))), 0))) ∈ ℝ) ↔ (𝐹 ∈ MblFn ∧
∀𝑘 ∈
(0...3)(∫2‘𝐺) ∈ ℝ))) |
38 | 20, 37 | syl5bb 282 |
1
⊢ (𝜑 → (𝐹 ∈ 𝐿1 ↔ (𝐹 ∈ MblFn ∧
∀𝑘 ∈
(0...3)(∫2‘𝐺) ∈ ℝ))) |