MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isibl Structured version   Visualization version   GIF version

Theorem isibl 25800
Description: The predicate "𝐹 is integrable". The "integrable" predicate corresponds roughly to the range of validity of 𝐴𝐵 d𝑥, which is to say that the expression 𝐴𝐵 d𝑥 doesn't make sense unless (𝑥𝐴𝐵) ∈ 𝐿1. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
isibl.1 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
isibl.2 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))))
isibl.3 (𝜑 → dom 𝐹 = 𝐴)
isibl.4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Assertion
Ref Expression
isibl (𝜑 → (𝐹 ∈ 𝐿1 ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘   𝑘,𝐹,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥,𝑘)   𝐺(𝑥,𝑘)

Proof of Theorem isibl
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6919 . . . . . . . . 9 (ℜ‘((𝑓𝑥) / (i↑𝑘))) ∈ V
2 breq2 5147 . . . . . . . . . . 11 (𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))) → (0 ≤ 𝑦 ↔ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))))
32anbi2d 630 . . . . . . . . . 10 (𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))) → ((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦) ↔ (𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘))))))
4 id 22 . . . . . . . . . 10 (𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))) → 𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))))
53, 4ifbieq1d 4550 . . . . . . . . 9 (𝑦 = (ℜ‘((𝑓𝑥) / (i↑𝑘))) → if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))), (ℜ‘((𝑓𝑥) / (i↑𝑘))), 0))
61, 5csbie 3934 . . . . . . . 8 (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))), (ℜ‘((𝑓𝑥) / (i↑𝑘))), 0)
7 dmeq 5914 . . . . . . . . . . 11 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
87eleq2d 2827 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑥 ∈ dom 𝑓𝑥 ∈ dom 𝐹))
9 fveq1 6905 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
109fvoveq1d 7453 . . . . . . . . . . 11 (𝑓 = 𝐹 → (ℜ‘((𝑓𝑥) / (i↑𝑘))) = (ℜ‘((𝐹𝑥) / (i↑𝑘))))
1110breq2d 5155 . . . . . . . . . 10 (𝑓 = 𝐹 → (0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘))) ↔ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))))
128, 11anbi12d 632 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))) ↔ (𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘))))))
1312, 10ifbieq1d 4550 . . . . . . . 8 (𝑓 = 𝐹 → if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ (ℜ‘((𝑓𝑥) / (i↑𝑘)))), (ℜ‘((𝑓𝑥) / (i↑𝑘))), 0) = if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))
146, 13eqtrid 2789 . . . . . . 7 (𝑓 = 𝐹(ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))
1514mpteq2dv 5244 . . . . . 6 (𝑓 = 𝐹 → (𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0)))
1615fveq2d 6910 . . . . 5 (𝑓 = 𝐹 → (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))))
1716eleq1d 2826 . . . 4 (𝑓 = 𝐹 → ((∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ))
1817ralbidv 3178 . . 3 (𝑓 = 𝐹 → (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ ↔ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ))
19 df-ibl 25657 . . 3 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ}
2018, 19elrab2 3695 . 2 (𝐹 ∈ 𝐿1 ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ))
21 isibl.3 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐴)
2221eleq2d 2827 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝐴))
2322anbi1d 631 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘))))))
2423ifbid 4549 . . . . . . . . 9 (𝜑 → if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))
25 isibl.4 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
2625fvoveq1d 7453 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (ℜ‘((𝐹𝑥) / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
27 isibl.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))))
2826, 27eqtr4d 2780 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (ℜ‘((𝐹𝑥) / (i↑𝑘))) = 𝑇)
2928ibllem 25799 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
3024, 29eqtrd 2777 . . . . . . . 8 (𝜑 → if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
3130mpteq2dv 5244 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
32 isibl.1 . . . . . . 7 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
3331, 32eqtr4d 2780 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0)) = 𝐺)
3433fveq2d 6910 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) = (∫2𝐺))
3534eleq1d 2826 . . . 4 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2𝐺) ∈ ℝ))
3635ralbidv 3178 . . 3 (𝜑 → (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ ↔ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ))
3736anbi2d 630 . 2 (𝜑 → ((𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘((𝐹𝑥) / (i↑𝑘)))), (ℜ‘((𝐹𝑥) / (i↑𝑘))), 0))) ∈ ℝ) ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
3820, 37bitrid 283 1 (𝜑 → (𝐹 ∈ 𝐿1 ↔ (𝐹 ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  csb 3899  ifcif 4525   class class class wbr 5143  cmpt 5225  dom cdm 5685  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  ici 11157  cle 11296   / cdiv 11920  3c3 12322  ...cfz 13547  cexp 14102  cre 15136  MblFncmbf 25649  2citg2 25651  𝐿1cibl 25652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-dm 5695  df-iota 6514  df-fv 6569  df-ov 7434  df-ibl 25657
This theorem is referenced by:  isibl2  25801  ibl0  25822  iblempty  45980
  Copyright terms: Public domain W3C validator