MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-im Structured version   Visualization version   GIF version

Definition df-im 15140
Description: Define a function whose value is the imaginary part of a complex number. See imval 15146 for its value, imcli 15207 for its closure, and replim 15155 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
Assertion
Ref Expression
df-im ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))

Detailed syntax breakdown of Definition df-im
StepHypRef Expression
1 cim 15137 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 11153 . . 3 class
42cv 1539 . . . . 5 class 𝑥
5 ci 11157 . . . . 5 class i
6 cdiv 11920 . . . . 5 class /
74, 5, 6co 7431 . . . 4 class (𝑥 / i)
8 cre 15136 . . . 4 class
97, 8cfv 6561 . . 3 class (ℜ‘(𝑥 / i))
102, 3, 9cmpt 5225 . 2 class (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
111, 10wceq 1540 1 wff ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
Colors of variables: wff setvar class
This definition is referenced by:  imval  15146  imf  15152  cnre2csqima  33910
  Copyright terms: Public domain W3C validator