MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-im Structured version   Visualization version   GIF version

Definition df-im 15050
Description: Define a function whose value is the imaginary part of a complex number. See imval 15056 for its value, imcli 15117 for its closure, and replim 15065 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
Assertion
Ref Expression
df-im ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))

Detailed syntax breakdown of Definition df-im
StepHypRef Expression
1 cim 15047 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 11105 . . 3 class
42cv 1532 . . . . 5 class 𝑥
5 ci 11109 . . . . 5 class i
6 cdiv 11870 . . . . 5 class /
74, 5, 6co 7402 . . . 4 class (𝑥 / i)
8 cre 15046 . . . 4 class
97, 8cfv 6534 . . 3 class (ℜ‘(𝑥 / i))
102, 3, 9cmpt 5222 . 2 class (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
111, 10wceq 1533 1 wff ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
Colors of variables: wff setvar class
This definition is referenced by:  imval  15056  imf  15062  cnre2csqima  33411
  Copyright terms: Public domain W3C validator