MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imf Structured version   Visualization version   GIF version

Theorem imf 15057
Description: Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imf ℑ:ℂ⟶ℝ

Proof of Theorem imf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-im 15045 . 2 ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
2 imval 15051 . . 3 (𝑥 ∈ ℂ → (ℑ‘𝑥) = (ℜ‘(𝑥 / i)))
3 imcl 15055 . . 3 (𝑥 ∈ ℂ → (ℑ‘𝑥) ∈ ℝ)
42, 3eqeltrrd 2826 . 2 (𝑥 ∈ ℂ → (ℜ‘(𝑥 / i)) ∈ ℝ)
51, 4fmpti 7103 1 ℑ:ℂ⟶ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  wf 6529  cfv 6533  (class class class)co 7401  cc 11104  cr 11105  ici 11108   / cdiv 11868  cre 15041  cim 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-2 12272  df-cj 15043  df-re 15044  df-im 15045
This theorem is referenced by:  imcn2  15543  climim  15548  rlimim  15553  caucvgr  15619  fsumim  15752  imcncf  24745  cnrehmeo  24800  cnrehmeoOLD  24801  ismbf  25479  ismbfcn  25480  mbfconst  25484  ismbfcn2  25489  mbfres  25495  mbfimaopnlem  25506  eff1olem  26399  ellogrn  26410  dvloglem  26498  logf1o2  26500  dvlog  26501  efopnlem2  26507  asinneg  26734  mbfresfi  37024  itgaddnc  37038  itgmulc2nc  37046  mbfres2cn  45159
  Copyright terms: Public domain W3C validator