Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imval | Structured version Visualization version GIF version |
Description: The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
imval | ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7330 | . 2 ⊢ (𝑥 = 𝐴 → (ℜ‘(𝑥 / i)) = (ℜ‘(𝐴 / i))) | |
2 | df-im 14861 | . 2 ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) | |
3 | fvex 6817 | . 2 ⊢ (ℜ‘(𝐴 / i)) ∈ V | |
4 | 1, 2, 3 | fvmpt 6907 | 1 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 ℂcc 10919 ici 10923 / cdiv 11682 ℜcre 14857 ℑcim 14858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-ov 7310 df-im 14861 |
This theorem is referenced by: imre 14868 reim 14869 imf 14873 crim 14875 iblcnlem1 25001 itgcnlem 25003 tanregt0 25744 cxpsqrtlem 25906 ang180lem2 26009 cnre2csqima 31910 ftc1anclem6 35903 |
Copyright terms: Public domain | W3C validator |