MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imval Structured version   Visualization version   GIF version

Theorem imval 15080
Description: The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imval (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))

Proof of Theorem imval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7413 . 2 (𝑥 = 𝐴 → (ℜ‘(𝑥 / i)) = (ℜ‘(𝐴 / i)))
2 df-im 15074 . 2 ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
3 fvex 6874 . 2 (ℜ‘(𝐴 / i)) ∈ V
41, 2, 3fvmpt 6971 1 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cc 11073  ici 11077   / cdiv 11842  cre 15070  cim 15071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-im 15074
This theorem is referenced by:  imre  15081  reim  15082  imf  15086  crim  15088  iblcnlem1  25696  itgcnlem  25698  tanregt0  26455  cxpsqrtlem  26618  ang180lem2  26727  cnre2csqima  33908  ftc1anclem6  37699
  Copyright terms: Public domain W3C validator