MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imval Structured version   Visualization version   GIF version

Theorem imval 14806
Description: The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imval (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))

Proof of Theorem imval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7291 . 2 (𝑥 = 𝐴 → (ℜ‘(𝑥 / i)) = (ℜ‘(𝐴 / i)))
2 df-im 14800 . 2 ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
3 fvex 6780 . 2 (ℜ‘(𝐴 / i)) ∈ V
41, 2, 3fvmpt 6868 1 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6427  (class class class)co 7268  cc 10857  ici 10861   / cdiv 11620  cre 14796  cim 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pr 5351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-iota 6385  df-fun 6429  df-fv 6435  df-ov 7271  df-im 14800
This theorem is referenced by:  imre  14807  reim  14808  imf  14812  crim  14814  iblcnlem1  24940  itgcnlem  24942  tanregt0  25683  cxpsqrtlem  25845  ang180lem2  25948  cnre2csqima  31847  ftc1anclem6  35841
  Copyright terms: Public domain W3C validator