![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imval | Structured version Visualization version GIF version |
Description: The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
imval | ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7454 | . 2 ⊢ (𝑥 = 𝐴 → (ℜ‘(𝑥 / i)) = (ℜ‘(𝐴 / i))) | |
2 | df-im 15137 | . 2 ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) | |
3 | fvex 6920 | . 2 ⊢ (ℜ‘(𝐴 / i)) ∈ V | |
4 | 1, 2, 3 | fvmpt 7016 | 1 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ici 11155 / cdiv 11918 ℜcre 15133 ℑcim 15134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-im 15137 |
This theorem is referenced by: imre 15144 reim 15145 imf 15149 crim 15151 iblcnlem1 25838 itgcnlem 25840 tanregt0 26596 cxpsqrtlem 26759 ang180lem2 26868 cnre2csqima 33872 ftc1anclem6 37685 |
Copyright terms: Public domain | W3C validator |