| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imval | Structured version Visualization version GIF version | ||
| Description: The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| imval | ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 7375 | . 2 ⊢ (𝑥 = 𝐴 → (ℜ‘(𝑥 / i)) = (ℜ‘(𝐴 / i))) | |
| 2 | df-im 15010 | . 2 ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) | |
| 3 | fvex 6841 | . 2 ⊢ (ℜ‘(𝐴 / i)) ∈ V | |
| 4 | 1, 2, 3 | fvmpt 6935 | 1 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ici 11015 / cdiv 11781 ℜcre 15006 ℑcim 15007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-im 15010 |
| This theorem is referenced by: imre 15017 reim 15018 imf 15022 crim 15024 iblcnlem1 25717 itgcnlem 25719 tanregt0 26476 cxpsqrtlem 26639 ang180lem2 26748 cnre2csqima 33945 ftc1anclem6 37758 |
| Copyright terms: Public domain | W3C validator |