MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imval Structured version   Visualization version   GIF version

Theorem imval 14867
Description: The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imval (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))

Proof of Theorem imval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7330 . 2 (𝑥 = 𝐴 → (ℜ‘(𝑥 / i)) = (ℜ‘(𝐴 / i)))
2 df-im 14861 . 2 ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
3 fvex 6817 . 2 (ℜ‘(𝐴 / i)) ∈ V
41, 2, 3fvmpt 6907 1 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  cc 10919  ici 10923   / cdiv 11682  cre 14857  cim 14858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-iota 6410  df-fun 6460  df-fv 6466  df-ov 7310  df-im 14861
This theorem is referenced by:  imre  14868  reim  14869  imf  14873  crim  14875  iblcnlem1  25001  itgcnlem  25003  tanregt0  25744  cxpsqrtlem  25906  ang180lem2  26009  cnre2csqima  31910  ftc1anclem6  35903
  Copyright terms: Public domain W3C validator