MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imval Structured version   Visualization version   GIF version

Theorem imval 15086
Description: The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imval (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))

Proof of Theorem imval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7443 . 2 (𝑥 = 𝐴 → (ℜ‘(𝑥 / i)) = (ℜ‘(𝐴 / i)))
2 df-im 15080 . 2 ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
3 fvex 6910 . 2 (ℜ‘(𝐴 / i)) ∈ V
41, 2, 3fvmpt 7005 1 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  cc 11136  ici 11140   / cdiv 11901  cre 15076  cim 15077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-ov 7423  df-im 15080
This theorem is referenced by:  imre  15087  reim  15088  imf  15092  crim  15094  iblcnlem1  25716  itgcnlem  25718  tanregt0  26472  cxpsqrtlem  26635  ang180lem2  26741  cnre2csqima  33512  ftc1anclem6  37171
  Copyright terms: Public domain W3C validator