Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnre2csqima Structured version   Visualization version   GIF version

Theorem cnre2csqima 33895
Description: Image of a centered square by the canonical bijection from (ℝ × ℝ) to . (Contributed by Thierry Arnoux, 27-Sep-2017.)
Hypothesis
Ref Expression
cnre2csqima.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
Assertion
Ref Expression
cnre2csqima ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) → ((abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem cnre2csqima
Dummy variables 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 13346 . . 3 (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) ⊆ ℝ
2 ioossre 13346 . . 3 (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)) ⊆ ℝ
3 xpinpreima2 33891 . . . 4 (((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) ⊆ ℝ ∧ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)) ⊆ ℝ) → ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) = (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))))
43eleq2d 2814 . . 3 (((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) ⊆ ℝ ∧ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)) ⊆ ℝ) → (𝑌 ∈ ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) ↔ 𝑌 ∈ (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))))))
51, 2, 4mp2an 692 . 2 (𝑌 ∈ ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) ↔ 𝑌 ∈ (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))))
6 elin 3927 . . 3 (𝑌 ∈ (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))) ↔ (𝑌 ∈ ((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∧ 𝑌 ∈ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))))
7 simpl 482 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ)
87recnd 11180 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
9 ax-icn 11105 . . . . . . . . . . . 12 i ∈ ℂ
109a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ)
11 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1211recnd 11180 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
1310, 12mulcld 11172 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ)
148, 13addcld 11171 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
15 reval 15049 . . . . . . . . 9 ((𝑥 + (i · 𝑦)) ∈ ℂ → (ℜ‘(𝑥 + (i · 𝑦))) = (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2))
1614, 15syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘(𝑥 + (i · 𝑦))) = (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2))
17 crre 15057 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥)
1816, 17eqtr3d 2766 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2) = 𝑥)
1918mpoeq3ia 7447 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥)
2014adantl 481 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + (i · 𝑦)) ∈ ℂ)
21 cnre2csqima.1 . . . . . . . . 9 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2221a1i 11 . . . . . . . 8 (⊤ → 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))))
23 df-re 15043 . . . . . . . . 9 ℜ = (𝑧 ∈ ℂ ↦ ((𝑧 + (∗‘𝑧)) / 2))
2423a1i 11 . . . . . . . 8 (⊤ → ℜ = (𝑧 ∈ ℂ ↦ ((𝑧 + (∗‘𝑧)) / 2)))
25 id 22 . . . . . . . . . 10 (𝑧 = (𝑥 + (i · 𝑦)) → 𝑧 = (𝑥 + (i · 𝑦)))
26 fveq2 6840 . . . . . . . . . 10 (𝑧 = (𝑥 + (i · 𝑦)) → (∗‘𝑧) = (∗‘(𝑥 + (i · 𝑦))))
2725, 26oveq12d 7387 . . . . . . . . 9 (𝑧 = (𝑥 + (i · 𝑦)) → (𝑧 + (∗‘𝑧)) = ((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))))
2827oveq1d 7384 . . . . . . . 8 (𝑧 = (𝑥 + (i · 𝑦)) → ((𝑧 + (∗‘𝑧)) / 2) = (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2))
2920, 22, 24, 28fmpoco 8051 . . . . . . 7 (⊤ → (ℜ ∘ 𝐹) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2)))
3029mptru 1547 . . . . . 6 (ℜ ∘ 𝐹) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2))
31 df1stres 32678 . . . . . 6 (1st ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥)
3219, 30, 313eqtr4ri 2763 . . . . 5 (1st ↾ (ℝ × ℝ)) = (ℜ ∘ 𝐹)
3314rgen2 3175 . . . . . 6 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + (i · 𝑦)) ∈ ℂ
3421fnmpo 8027 . . . . . 6 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + (i · 𝑦)) ∈ ℂ → 𝐹 Fn (ℝ × ℝ))
3533, 34ax-mp 5 . . . . 5 𝐹 Fn (ℝ × ℝ)
36 fo1st 7967 . . . . . 6 1st :V–onto→V
37 fofn 6756 . . . . . 6 (1st :V–onto→V → 1st Fn V)
3836, 37ax-mp 5 . . . . 5 1st Fn V
39 xp1st 7979 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
4021rnmpo 7502 . . . . . . . 8 ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = (𝑥 + (i · 𝑦))}
41 simpr 484 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦))) → 𝑧 = (𝑥 + (i · 𝑦)))
4214adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦))) → (𝑥 + (i · 𝑦)) ∈ ℂ)
4341, 42eqeltrd 2828 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦))) → 𝑧 ∈ ℂ)
4443ex 412 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 = (𝑥 + (i · 𝑦)) → 𝑧 ∈ ℂ))
4544rexlimivv 3177 . . . . . . . . 9 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = (𝑥 + (i · 𝑦)) → 𝑧 ∈ ℂ)
4645abssi 4029 . . . . . . . 8 {𝑧 ∣ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = (𝑥 + (i · 𝑦))} ⊆ ℂ
4740, 46eqsstri 3990 . . . . . . 7 ran 𝐹 ⊆ ℂ
48 simpl 482 . . . . . . 7 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → 𝑧 ∈ ran 𝐹)
4947, 48sselid 3941 . . . . . 6 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → 𝑧 ∈ ℂ)
50 simpr 484 . . . . . . 7 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → 𝑢 ∈ ran 𝐹)
5147, 50sselid 3941 . . . . . 6 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → 𝑢 ∈ ℂ)
5249, 51resubd 15159 . . . . 5 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → (ℜ‘(𝑧𝑢)) = ((ℜ‘𝑧) − (ℜ‘𝑢)))
5332, 35, 38, 39, 52cnre2csqlem 33894 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) → (abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
54 imval 15050 . . . . . . . . 9 ((𝑥 + (i · 𝑦)) ∈ ℂ → (ℑ‘(𝑥 + (i · 𝑦))) = (ℜ‘((𝑥 + (i · 𝑦)) / i)))
5514, 54syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥 + (i · 𝑦))) = (ℜ‘((𝑥 + (i · 𝑦)) / i)))
56 crim 15058 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦)
5755, 56eqtr3d 2766 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘((𝑥 + (i · 𝑦)) / i)) = 𝑦)
5857mpoeq3ia 7447 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (ℜ‘((𝑥 + (i · 𝑦)) / i))) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦)
59 df-im 15044 . . . . . . . . 9 ℑ = (𝑧 ∈ ℂ ↦ (ℜ‘(𝑧 / i)))
6059a1i 11 . . . . . . . 8 (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℜ‘(𝑧 / i))))
61 fvoveq1 7392 . . . . . . . 8 (𝑧 = (𝑥 + (i · 𝑦)) → (ℜ‘(𝑧 / i)) = (ℜ‘((𝑥 + (i · 𝑦)) / i)))
6220, 22, 60, 61fmpoco 8051 . . . . . . 7 (⊤ → (ℑ ∘ 𝐹) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (ℜ‘((𝑥 + (i · 𝑦)) / i))))
6362mptru 1547 . . . . . 6 (ℑ ∘ 𝐹) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (ℜ‘((𝑥 + (i · 𝑦)) / i)))
64 df2ndres 32679 . . . . . 6 (2nd ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦)
6558, 63, 643eqtr4ri 2763 . . . . 5 (2nd ↾ (ℝ × ℝ)) = (ℑ ∘ 𝐹)
66 fo2nd 7968 . . . . . 6 2nd :V–onto→V
67 fofn 6756 . . . . . 6 (2nd :V–onto→V → 2nd Fn V)
6866, 67ax-mp 5 . . . . 5 2nd Fn V
69 xp2nd 7980 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
7049, 51imsubd 15160 . . . . 5 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → (ℑ‘(𝑧𝑢)) = ((ℑ‘𝑧) − (ℑ‘𝑢)))
7165, 35, 68, 69, 70cnre2csqlem 33894 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) → (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
7253, 71anim12d 609 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝑌 ∈ ((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∧ 𝑌 ∈ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))) → ((abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷)))
736, 72biimtrid 242 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))) → ((abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷)))
745, 73biimtrid 242 1 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) → ((abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3444  cin 3910  wss 3911   class class class wbr 5102  cmpt 5183   × cxp 5629  ccnv 5630  ran crn 5632  cres 5633  cima 5634  ccom 5635   Fn wfn 6494  ontowfo 6497  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  cc 11044  cr 11045  ici 11048   + caddc 11049   · cmul 11051   < clt 11186  cmin 11383   / cdiv 11813  2c2 12219  +crp 12929  (,)cioo 13284  ccj 15039  cre 15040  cim 15041  abscabs 15177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-n0 12421  df-z 12508  df-uz 12772  df-rp 12930  df-ioo 13288  df-seq 13945  df-exp 14005  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179
This theorem is referenced by:  tpr2rico  33896
  Copyright terms: Public domain W3C validator