Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnre2csqima Structured version   Visualization version   GIF version

Theorem cnre2csqima 33850
Description: Image of a centered square by the canonical bijection from (ℝ × ℝ) to . (Contributed by Thierry Arnoux, 27-Sep-2017.)
Hypothesis
Ref Expression
cnre2csqima.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
Assertion
Ref Expression
cnre2csqima ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) → ((abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem cnre2csqima
Dummy variables 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 13414 . . 3 (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) ⊆ ℝ
2 ioossre 13414 . . 3 (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)) ⊆ ℝ
3 xpinpreima2 33846 . . . 4 (((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) ⊆ ℝ ∧ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)) ⊆ ℝ) → ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) = (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))))
43eleq2d 2819 . . 3 (((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) ⊆ ℝ ∧ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)) ⊆ ℝ) → (𝑌 ∈ ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) ↔ 𝑌 ∈ (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))))))
51, 2, 4mp2an 692 . 2 (𝑌 ∈ ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) ↔ 𝑌 ∈ (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))))
6 elin 3940 . . 3 (𝑌 ∈ (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))) ↔ (𝑌 ∈ ((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∧ 𝑌 ∈ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))))
7 simpl 482 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ)
87recnd 11255 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
9 ax-icn 11180 . . . . . . . . . . . 12 i ∈ ℂ
109a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ)
11 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1211recnd 11255 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
1310, 12mulcld 11247 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ)
148, 13addcld 11246 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
15 reval 15112 . . . . . . . . 9 ((𝑥 + (i · 𝑦)) ∈ ℂ → (ℜ‘(𝑥 + (i · 𝑦))) = (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2))
1614, 15syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘(𝑥 + (i · 𝑦))) = (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2))
17 crre 15120 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥)
1816, 17eqtr3d 2771 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2) = 𝑥)
1918mpoeq3ia 7479 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥)
2014adantl 481 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + (i · 𝑦)) ∈ ℂ)
21 cnre2csqima.1 . . . . . . . . 9 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2221a1i 11 . . . . . . . 8 (⊤ → 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))))
23 df-re 15106 . . . . . . . . 9 ℜ = (𝑧 ∈ ℂ ↦ ((𝑧 + (∗‘𝑧)) / 2))
2423a1i 11 . . . . . . . 8 (⊤ → ℜ = (𝑧 ∈ ℂ ↦ ((𝑧 + (∗‘𝑧)) / 2)))
25 id 22 . . . . . . . . . 10 (𝑧 = (𝑥 + (i · 𝑦)) → 𝑧 = (𝑥 + (i · 𝑦)))
26 fveq2 6872 . . . . . . . . . 10 (𝑧 = (𝑥 + (i · 𝑦)) → (∗‘𝑧) = (∗‘(𝑥 + (i · 𝑦))))
2725, 26oveq12d 7417 . . . . . . . . 9 (𝑧 = (𝑥 + (i · 𝑦)) → (𝑧 + (∗‘𝑧)) = ((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))))
2827oveq1d 7414 . . . . . . . 8 (𝑧 = (𝑥 + (i · 𝑦)) → ((𝑧 + (∗‘𝑧)) / 2) = (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2))
2920, 22, 24, 28fmpoco 8088 . . . . . . 7 (⊤ → (ℜ ∘ 𝐹) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2)))
3029mptru 1546 . . . . . 6 (ℜ ∘ 𝐹) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2))
31 df1stres 32614 . . . . . 6 (1st ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥)
3219, 30, 313eqtr4ri 2768 . . . . 5 (1st ↾ (ℝ × ℝ)) = (ℜ ∘ 𝐹)
3314rgen2 3182 . . . . . 6 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + (i · 𝑦)) ∈ ℂ
3421fnmpo 8062 . . . . . 6 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + (i · 𝑦)) ∈ ℂ → 𝐹 Fn (ℝ × ℝ))
3533, 34ax-mp 5 . . . . 5 𝐹 Fn (ℝ × ℝ)
36 fo1st 8002 . . . . . 6 1st :V–onto→V
37 fofn 6788 . . . . . 6 (1st :V–onto→V → 1st Fn V)
3836, 37ax-mp 5 . . . . 5 1st Fn V
39 xp1st 8014 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
4021rnmpo 7534 . . . . . . . 8 ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = (𝑥 + (i · 𝑦))}
41 simpr 484 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦))) → 𝑧 = (𝑥 + (i · 𝑦)))
4214adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦))) → (𝑥 + (i · 𝑦)) ∈ ℂ)
4341, 42eqeltrd 2833 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦))) → 𝑧 ∈ ℂ)
4443ex 412 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 = (𝑥 + (i · 𝑦)) → 𝑧 ∈ ℂ))
4544rexlimivv 3184 . . . . . . . . 9 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = (𝑥 + (i · 𝑦)) → 𝑧 ∈ ℂ)
4645abssi 4043 . . . . . . . 8 {𝑧 ∣ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = (𝑥 + (i · 𝑦))} ⊆ ℂ
4740, 46eqsstri 4003 . . . . . . 7 ran 𝐹 ⊆ ℂ
48 simpl 482 . . . . . . 7 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → 𝑧 ∈ ran 𝐹)
4947, 48sselid 3954 . . . . . 6 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → 𝑧 ∈ ℂ)
50 simpr 484 . . . . . . 7 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → 𝑢 ∈ ran 𝐹)
5147, 50sselid 3954 . . . . . 6 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → 𝑢 ∈ ℂ)
5249, 51resubd 15222 . . . . 5 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → (ℜ‘(𝑧𝑢)) = ((ℜ‘𝑧) − (ℜ‘𝑢)))
5332, 35, 38, 39, 52cnre2csqlem 33849 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) → (abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
54 imval 15113 . . . . . . . . 9 ((𝑥 + (i · 𝑦)) ∈ ℂ → (ℑ‘(𝑥 + (i · 𝑦))) = (ℜ‘((𝑥 + (i · 𝑦)) / i)))
5514, 54syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥 + (i · 𝑦))) = (ℜ‘((𝑥 + (i · 𝑦)) / i)))
56 crim 15121 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦)
5755, 56eqtr3d 2771 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘((𝑥 + (i · 𝑦)) / i)) = 𝑦)
5857mpoeq3ia 7479 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (ℜ‘((𝑥 + (i · 𝑦)) / i))) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦)
59 df-im 15107 . . . . . . . . 9 ℑ = (𝑧 ∈ ℂ ↦ (ℜ‘(𝑧 / i)))
6059a1i 11 . . . . . . . 8 (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℜ‘(𝑧 / i))))
61 fvoveq1 7422 . . . . . . . 8 (𝑧 = (𝑥 + (i · 𝑦)) → (ℜ‘(𝑧 / i)) = (ℜ‘((𝑥 + (i · 𝑦)) / i)))
6220, 22, 60, 61fmpoco 8088 . . . . . . 7 (⊤ → (ℑ ∘ 𝐹) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (ℜ‘((𝑥 + (i · 𝑦)) / i))))
6362mptru 1546 . . . . . 6 (ℑ ∘ 𝐹) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (ℜ‘((𝑥 + (i · 𝑦)) / i)))
64 df2ndres 32615 . . . . . 6 (2nd ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦)
6558, 63, 643eqtr4ri 2768 . . . . 5 (2nd ↾ (ℝ × ℝ)) = (ℑ ∘ 𝐹)
66 fo2nd 8003 . . . . . 6 2nd :V–onto→V
67 fofn 6788 . . . . . 6 (2nd :V–onto→V → 2nd Fn V)
6866, 67ax-mp 5 . . . . 5 2nd Fn V
69 xp2nd 8015 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
7049, 51imsubd 15223 . . . . 5 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → (ℑ‘(𝑧𝑢)) = ((ℑ‘𝑧) − (ℑ‘𝑢)))
7165, 35, 68, 69, 70cnre2csqlem 33849 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) → (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
7253, 71anim12d 609 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝑌 ∈ ((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∧ 𝑌 ∈ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))) → ((abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷)))
736, 72biimtrid 242 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))) → ((abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷)))
745, 73biimtrid 242 1 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) → ((abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wtru 1540  wcel 2107  {cab 2712  wral 3050  wrex 3059  Vcvv 3457  cin 3923  wss 3924   class class class wbr 5116  cmpt 5198   × cxp 5649  ccnv 5650  ran crn 5652  cres 5653  cima 5654  ccom 5655   Fn wfn 6522  ontowfo 6525  cfv 6527  (class class class)co 7399  cmpo 7401  1st c1st 7980  2nd c2nd 7981  cc 11119  cr 11120  ici 11123   + caddc 11124   · cmul 11126   < clt 11261  cmin 11458   / cdiv 11886  2c2 12287  +crp 13000  (,)cioo 13353  ccj 15102  cre 15103  cim 15104  abscabs 15240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9448  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-n0 12494  df-z 12581  df-uz 12845  df-rp 13001  df-ioo 13357  df-seq 14009  df-exp 14069  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-abs 15242
This theorem is referenced by:  tpr2rico  33851
  Copyright terms: Public domain W3C validator