Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnre2csqima Structured version   Visualization version   GIF version

Theorem cnre2csqima 33901
Description: Image of a centered square by the canonical bijection from (ℝ × ℝ) to . (Contributed by Thierry Arnoux, 27-Sep-2017.)
Hypothesis
Ref Expression
cnre2csqima.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
Assertion
Ref Expression
cnre2csqima ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) → ((abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem cnre2csqima
Dummy variables 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 13368 . . 3 (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) ⊆ ℝ
2 ioossre 13368 . . 3 (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)) ⊆ ℝ
3 xpinpreima2 33897 . . . 4 (((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) ⊆ ℝ ∧ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)) ⊆ ℝ) → ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) = (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))))
43eleq2d 2814 . . 3 (((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) ⊆ ℝ ∧ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)) ⊆ ℝ) → (𝑌 ∈ ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) ↔ 𝑌 ∈ (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))))))
51, 2, 4mp2an 692 . 2 (𝑌 ∈ ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) ↔ 𝑌 ∈ (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))))
6 elin 3930 . . 3 (𝑌 ∈ (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))) ↔ (𝑌 ∈ ((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∧ 𝑌 ∈ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))))
7 simpl 482 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ)
87recnd 11202 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
9 ax-icn 11127 . . . . . . . . . . . 12 i ∈ ℂ
109a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ)
11 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1211recnd 11202 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
1310, 12mulcld 11194 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ)
148, 13addcld 11193 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
15 reval 15072 . . . . . . . . 9 ((𝑥 + (i · 𝑦)) ∈ ℂ → (ℜ‘(𝑥 + (i · 𝑦))) = (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2))
1614, 15syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘(𝑥 + (i · 𝑦))) = (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2))
17 crre 15080 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥)
1816, 17eqtr3d 2766 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2) = 𝑥)
1918mpoeq3ia 7467 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥)
2014adantl 481 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + (i · 𝑦)) ∈ ℂ)
21 cnre2csqima.1 . . . . . . . . 9 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2221a1i 11 . . . . . . . 8 (⊤ → 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))))
23 df-re 15066 . . . . . . . . 9 ℜ = (𝑧 ∈ ℂ ↦ ((𝑧 + (∗‘𝑧)) / 2))
2423a1i 11 . . . . . . . 8 (⊤ → ℜ = (𝑧 ∈ ℂ ↦ ((𝑧 + (∗‘𝑧)) / 2)))
25 id 22 . . . . . . . . . 10 (𝑧 = (𝑥 + (i · 𝑦)) → 𝑧 = (𝑥 + (i · 𝑦)))
26 fveq2 6858 . . . . . . . . . 10 (𝑧 = (𝑥 + (i · 𝑦)) → (∗‘𝑧) = (∗‘(𝑥 + (i · 𝑦))))
2725, 26oveq12d 7405 . . . . . . . . 9 (𝑧 = (𝑥 + (i · 𝑦)) → (𝑧 + (∗‘𝑧)) = ((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))))
2827oveq1d 7402 . . . . . . . 8 (𝑧 = (𝑥 + (i · 𝑦)) → ((𝑧 + (∗‘𝑧)) / 2) = (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2))
2920, 22, 24, 28fmpoco 8074 . . . . . . 7 (⊤ → (ℜ ∘ 𝐹) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2)))
3029mptru 1547 . . . . . 6 (ℜ ∘ 𝐹) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (((𝑥 + (i · 𝑦)) + (∗‘(𝑥 + (i · 𝑦)))) / 2))
31 df1stres 32627 . . . . . 6 (1st ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥)
3219, 30, 313eqtr4ri 2763 . . . . 5 (1st ↾ (ℝ × ℝ)) = (ℜ ∘ 𝐹)
3314rgen2 3177 . . . . . 6 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + (i · 𝑦)) ∈ ℂ
3421fnmpo 8048 . . . . . 6 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + (i · 𝑦)) ∈ ℂ → 𝐹 Fn (ℝ × ℝ))
3533, 34ax-mp 5 . . . . 5 𝐹 Fn (ℝ × ℝ)
36 fo1st 7988 . . . . . 6 1st :V–onto→V
37 fofn 6774 . . . . . 6 (1st :V–onto→V → 1st Fn V)
3836, 37ax-mp 5 . . . . 5 1st Fn V
39 xp1st 8000 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
4021rnmpo 7522 . . . . . . . 8 ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = (𝑥 + (i · 𝑦))}
41 simpr 484 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦))) → 𝑧 = (𝑥 + (i · 𝑦)))
4214adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦))) → (𝑥 + (i · 𝑦)) ∈ ℂ)
4341, 42eqeltrd 2828 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦))) → 𝑧 ∈ ℂ)
4443ex 412 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 = (𝑥 + (i · 𝑦)) → 𝑧 ∈ ℂ))
4544rexlimivv 3179 . . . . . . . . 9 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = (𝑥 + (i · 𝑦)) → 𝑧 ∈ ℂ)
4645abssi 4033 . . . . . . . 8 {𝑧 ∣ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = (𝑥 + (i · 𝑦))} ⊆ ℂ
4740, 46eqsstri 3993 . . . . . . 7 ran 𝐹 ⊆ ℂ
48 simpl 482 . . . . . . 7 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → 𝑧 ∈ ran 𝐹)
4947, 48sselid 3944 . . . . . 6 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → 𝑧 ∈ ℂ)
50 simpr 484 . . . . . . 7 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → 𝑢 ∈ ran 𝐹)
5147, 50sselid 3944 . . . . . 6 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → 𝑢 ∈ ℂ)
5249, 51resubd 15182 . . . . 5 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → (ℜ‘(𝑧𝑢)) = ((ℜ‘𝑧) − (ℜ‘𝑢)))
5332, 35, 38, 39, 52cnre2csqlem 33900 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) → (abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
54 imval 15073 . . . . . . . . 9 ((𝑥 + (i · 𝑦)) ∈ ℂ → (ℑ‘(𝑥 + (i · 𝑦))) = (ℜ‘((𝑥 + (i · 𝑦)) / i)))
5514, 54syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥 + (i · 𝑦))) = (ℜ‘((𝑥 + (i · 𝑦)) / i)))
56 crim 15081 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦)
5755, 56eqtr3d 2766 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘((𝑥 + (i · 𝑦)) / i)) = 𝑦)
5857mpoeq3ia 7467 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (ℜ‘((𝑥 + (i · 𝑦)) / i))) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦)
59 df-im 15067 . . . . . . . . 9 ℑ = (𝑧 ∈ ℂ ↦ (ℜ‘(𝑧 / i)))
6059a1i 11 . . . . . . . 8 (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℜ‘(𝑧 / i))))
61 fvoveq1 7410 . . . . . . . 8 (𝑧 = (𝑥 + (i · 𝑦)) → (ℜ‘(𝑧 / i)) = (ℜ‘((𝑥 + (i · 𝑦)) / i)))
6220, 22, 60, 61fmpoco 8074 . . . . . . 7 (⊤ → (ℑ ∘ 𝐹) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (ℜ‘((𝑥 + (i · 𝑦)) / i))))
6362mptru 1547 . . . . . 6 (ℑ ∘ 𝐹) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (ℜ‘((𝑥 + (i · 𝑦)) / i)))
64 df2ndres 32628 . . . . . 6 (2nd ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦)
6558, 63, 643eqtr4ri 2763 . . . . 5 (2nd ↾ (ℝ × ℝ)) = (ℑ ∘ 𝐹)
66 fo2nd 7989 . . . . . 6 2nd :V–onto→V
67 fofn 6774 . . . . . 6 (2nd :V–onto→V → 2nd Fn V)
6866, 67ax-mp 5 . . . . 5 2nd Fn V
69 xp2nd 8001 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
7049, 51imsubd 15183 . . . . 5 ((𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹) → (ℑ‘(𝑧𝑢)) = ((ℑ‘𝑧) − (ℑ‘𝑢)))
7165, 35, 68, 69, 70cnre2csqlem 33900 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) → (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
7253, 71anim12d 609 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝑌 ∈ ((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∧ 𝑌 ∈ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))) → ((abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷)))
736, 72biimtrid 242 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ (((1st ↾ (ℝ × ℝ)) “ (((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷))) ∩ ((2nd ↾ (ℝ × ℝ)) “ (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷)))) → ((abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷)))
745, 73biimtrid 242 1 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((((1st𝑋) − 𝐷)(,)((1st𝑋) + 𝐷)) × (((2nd𝑋) − 𝐷)(,)((2nd𝑋) + 𝐷))) → ((abs‘(ℜ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  cin 3913  wss 3914   class class class wbr 5107  cmpt 5188   × cxp 5636  ccnv 5637  ran crn 5639  cres 5640  cima 5641  ccom 5642   Fn wfn 6506  ontowfo 6509  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  cc 11066  cr 11067  ici 11070   + caddc 11071   · cmul 11073   < clt 11208  cmin 11405   / cdiv 11835  2c2 12241  +crp 12951  (,)cioo 13306  ccj 15062  cre 15063  cim 15064  abscabs 15200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ioo 13310  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202
This theorem is referenced by:  tpr2rico  33902
  Copyright terms: Public domain W3C validator