| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-int | Structured version Visualization version GIF version | ||
| Description: Define the intersection of a class. Definition 7.35 of [TakeutiZaring] p. 44. For example, ∩ {{1, 3}, {1, 8}} = {1}. Compare this with the intersection of two classes, df-in 3958. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-int | ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | cint 4946 | . 2 class ∩ 𝐴 |
| 3 | vy | . . . . . . 7 setvar 𝑦 | |
| 4 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 5 | 4, 1 | wcel 2108 | . . . . 5 wff 𝑦 ∈ 𝐴 |
| 6 | vx | . . . . . 6 setvar 𝑥 | |
| 7 | 6, 3 | wel 2109 | . . . . 5 wff 𝑥 ∈ 𝑦 |
| 8 | 5, 7 | wi 4 | . . . 4 wff (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) |
| 9 | 8, 3 | wal 1538 | . . 3 wff ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) |
| 10 | 9, 6 | cab 2714 | . 2 class {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
| 11 | 2, 10 | wceq 1540 | 1 wff ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfint2 4948 elint 4952 dfiin2g 5032 iinabrex 32582 nfintd 49192 |
| Copyright terms: Public domain | W3C validator |