Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-int | Structured version Visualization version GIF version |
Description: Define the intersection of a class. Definition 7.35 of [TakeutiZaring] p. 44. For example, ∩ {{1, 3}, {1, 8}} = {1}. Compare this with the intersection of two classes, df-in 3890. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
df-int | ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | cint 4876 | . 2 class ∩ 𝐴 |
3 | vy | . . . . . . 7 setvar 𝑦 | |
4 | 3 | cv 1538 | . . . . . 6 class 𝑦 |
5 | 4, 1 | wcel 2108 | . . . . 5 wff 𝑦 ∈ 𝐴 |
6 | vx | . . . . . 6 setvar 𝑥 | |
7 | 6, 3 | wel 2109 | . . . . 5 wff 𝑥 ∈ 𝑦 |
8 | 5, 7 | wi 4 | . . . 4 wff (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) |
9 | 8, 3 | wal 1537 | . . 3 wff ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) |
10 | 9, 6 | cab 2715 | . 2 class {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
11 | 2, 10 | wceq 1539 | 1 wff ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
Colors of variables: wff setvar class |
This definition is referenced by: dfint2 4878 elint 4882 dfiin2g 4958 iinabrex 30809 nfintd 46265 |
Copyright terms: Public domain | W3C validator |