MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-in Structured version   Visualization version   GIF version

Definition df-in 3890
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 28690). Contrast this operation with union (𝐴𝐵) (df-un 3888) and difference (𝐴𝐵) (df-dif 3886). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4191 and dfin4 4198. For intersection defined in terms of union, see dfin3 4197. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3882 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1538 . . . . 5 class 𝑥
65, 1wcel 2108 . . . 4 wff 𝑥𝐴
75, 2wcel 2108 . . . 4 wff 𝑥𝐵
86, 7wa 395 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2715 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1539 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  dfin5  3891  elin  3899  dfss2OLD  3904  ss2abdv  3993  disj  4378  disjOLD  4379  iinxprg  5014  disjex  30832  disjexc  30833  eulerpartlemt  32238  iocinico  40959  csbingVD  42393
  Copyright terms: Public domain W3C validator