MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-in Structured version   Visualization version   GIF version

Definition df-in 3906
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30416). Contrast this operation with union (𝐴𝐵) (df-un 3904) and difference (𝐴𝐵) (df-dif 3902). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4222 and dfin4 4229. For intersection defined in terms of union, see dfin3 4228. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3898 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1540 . . . . 5 class 𝑥
65, 1wcel 2113 . . . 4 wff 𝑥𝐴
75, 2wcel 2113 . . . 4 wff 𝑥𝐵
86, 7wa 395 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2711 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1541 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  dfin5  3907  elin  3915  dfss2  3917  disj  4401  iinxprg  5041  disjex  32583  disjexc  32584  eulerpartlemt  34395  in-ax8  36279  iocinico  43319  csbingVD  44990
  Copyright terms: Public domain W3C validator