| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-in | Structured version Visualization version GIF version | ||
| Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30395). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3905) and difference (𝐴 ∖ 𝐵) (df-dif 3903). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4219 and dfin4 4226. For intersection defined in terms of union, see dfin3 4225. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-in | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cin 3899 | . 2 class (𝐴 ∩ 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1540 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2110 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 5, 2 | wcel 2110 | . . . 4 wff 𝑥 ∈ 𝐵 |
| 8 | 6, 7 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) |
| 9 | 8, 4 | cab 2708 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| 10 | 3, 9 | wceq 1541 | 1 wff (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfin5 3908 elin 3916 dfss2 3918 disj 4398 iinxprg 5035 disjex 32562 disjexc 32563 eulerpartlemt 34374 in-ax8 36237 iocinico 43224 csbingVD 44895 |
| Copyright terms: Public domain | W3C validator |