Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-in | Structured version Visualization version GIF version |
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 28690). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3888) and difference (𝐴 ∖ 𝐵) (df-dif 3886). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4191 and dfin4 4198. For intersection defined in terms of union, see dfin3 4197. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
df-in | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cin 3882 | . 2 class (𝐴 ∩ 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1538 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 5, 2 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐵 |
8 | 6, 7 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) |
9 | 8, 4 | cab 2715 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
10 | 3, 9 | wceq 1539 | 1 wff (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: dfin5 3891 elin 3899 dfss2OLD 3904 ss2abdv 3993 disj 4378 disjOLD 4379 iinxprg 5014 disjex 30832 disjexc 30833 eulerpartlemt 32238 iocinico 40959 csbingVD 42393 |
Copyright terms: Public domain | W3C validator |