Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-in | Structured version Visualization version GIF version |
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 28798). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3893) and difference (𝐴 ∖ 𝐵) (df-dif 3891). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4195 and dfin4 4202. For intersection defined in terms of union, see dfin3 4201. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
df-in | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cin 3887 | . 2 class (𝐴 ∩ 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1538 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2107 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 5, 2 | wcel 2107 | . . . 4 wff 𝑥 ∈ 𝐵 |
8 | 6, 7 | wa 396 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) |
9 | 8, 4 | cab 2716 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
10 | 3, 9 | wceq 1539 | 1 wff (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: dfin5 3896 elin 3904 dfss2OLD 3909 ss2abdv 3998 disj 4382 disjOLD 4383 iinxprg 5019 disjex 30940 disjexc 30941 eulerpartlemt 32347 iocinico 41050 csbingVD 42511 |
Copyright terms: Public domain | W3C validator |