| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-in | Structured version Visualization version GIF version | ||
| Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30373). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3936) and difference (𝐴 ∖ 𝐵) (df-dif 3934). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4251 and dfin4 4258. For intersection defined in terms of union, see dfin3 4257. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-in | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cin 3930 | . 2 class (𝐴 ∩ 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1538 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2107 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 5, 2 | wcel 2107 | . . . 4 wff 𝑥 ∈ 𝐵 |
| 8 | 6, 7 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) |
| 9 | 8, 4 | cab 2712 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| 10 | 3, 9 | wceq 1539 | 1 wff (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfin5 3939 elin 3947 dfss2 3949 disj 4430 iinxprg 5069 disjex 32541 disjexc 32542 eulerpartlemt 34348 in-ax8 36200 iocinico 43202 csbingVD 44876 |
| Copyright terms: Public domain | W3C validator |