MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-in Structured version   Visualization version   GIF version

Definition df-in 3969
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30453). Contrast this operation with union (𝐴𝐵) (df-un 3967) and difference (𝐴𝐵) (df-dif 3965). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4276 and dfin4 4283. For intersection defined in terms of union, see dfin3 4282. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3961 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1535 . . . . 5 class 𝑥
65, 1wcel 2105 . . . 4 wff 𝑥𝐴
75, 2wcel 2105 . . . 4 wff 𝑥𝐵
86, 7wa 395 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2711 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1536 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  dfin5  3970  elin  3978  dfss2  3980  disj  4455  iinxprg  5093  disjex  32611  disjexc  32612  eulerpartlemt  34352  in-ax8  36206  iocinico  43200  csbingVD  44881
  Copyright terms: Public domain W3C validator