MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-in Structured version   Visualization version   GIF version

Definition df-in 3921
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30354). Contrast this operation with union (𝐴𝐵) (df-un 3919) and difference (𝐴𝐵) (df-dif 3917). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4234 and dfin4 4241. For intersection defined in terms of union, see dfin3 4240. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3913 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1539 . . . . 5 class 𝑥
65, 1wcel 2109 . . . 4 wff 𝑥𝐴
75, 2wcel 2109 . . . 4 wff 𝑥𝐵
86, 7wa 395 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2707 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1540 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  dfin5  3922  elin  3930  dfss2  3932  disj  4413  iinxprg  5053  disjex  32521  disjexc  32522  eulerpartlemt  34362  in-ax8  36212  iocinico  43201  csbingVD  44873
  Copyright terms: Public domain W3C validator