MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-in Structured version   Visualization version   GIF version

Definition df-in 3983
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30457). Contrast this operation with union (𝐴𝐵) (df-un 3981) and difference (𝐴𝐵) (df-dif 3979). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4290 and dfin4 4297. For intersection defined in terms of union, see dfin3 4296. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3975 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1536 . . . . 5 class 𝑥
65, 1wcel 2108 . . . 4 wff 𝑥𝐴
75, 2wcel 2108 . . . 4 wff 𝑥𝐵
86, 7wa 395 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2717 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1537 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  dfin5  3984  elin  3992  dfss2  3994  disj  4473  iinxprg  5112  disjex  32614  disjexc  32615  eulerpartlemt  34336  in-ax8  36190  iocinico  43173  csbingVD  44855
  Copyright terms: Public domain W3C validator