| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-in | Structured version Visualization version GIF version | ||
| Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30352). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3931) and difference (𝐴 ∖ 𝐵) (df-dif 3929). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4246 and dfin4 4253. For intersection defined in terms of union, see dfin3 4252. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-in | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cin 3925 | . 2 class (𝐴 ∩ 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 5, 2 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐵 |
| 8 | 6, 7 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) |
| 9 | 8, 4 | cab 2713 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| 10 | 3, 9 | wceq 1540 | 1 wff (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfin5 3934 elin 3942 dfss2 3944 disj 4425 iinxprg 5065 disjex 32519 disjexc 32520 eulerpartlemt 34349 in-ax8 36188 iocinico 43183 csbingVD 44856 |
| Copyright terms: Public domain | W3C validator |