![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-in | Structured version Visualization version GIF version |
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30457). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3981) and difference (𝐴 ∖ 𝐵) (df-dif 3979). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4290 and dfin4 4297. For intersection defined in terms of union, see dfin3 4296. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
df-in | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cin 3975 | . 2 class (𝐴 ∩ 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1536 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 5, 2 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐵 |
8 | 6, 7 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) |
9 | 8, 4 | cab 2717 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
10 | 3, 9 | wceq 1537 | 1 wff (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: dfin5 3984 elin 3992 dfss2 3994 disj 4473 iinxprg 5112 disjex 32614 disjexc 32615 eulerpartlemt 34336 in-ax8 36190 iocinico 43173 csbingVD 44855 |
Copyright terms: Public domain | W3C validator |