MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-in Structured version   Visualization version   GIF version

Definition df-in 3907
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30395). Contrast this operation with union (𝐴𝐵) (df-un 3905) and difference (𝐴𝐵) (df-dif 3903). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4219 and dfin4 4226. For intersection defined in terms of union, see dfin3 4225. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3899 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1540 . . . . 5 class 𝑥
65, 1wcel 2110 . . . 4 wff 𝑥𝐴
75, 2wcel 2110 . . . 4 wff 𝑥𝐵
86, 7wa 395 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2708 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1541 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  dfin5  3908  elin  3916  dfss2  3918  disj  4398  iinxprg  5035  disjex  32562  disjexc  32563  eulerpartlemt  34374  in-ax8  36237  iocinico  43224  csbingVD  44895
  Copyright terms: Public domain W3C validator