Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-in | Structured version Visualization version GIF version |
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 28309). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3863) and difference (𝐴 ∖ 𝐵) (df-dif 3861). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4165 and dfin4 4172. For intersection defined in terms of union, see dfin3 4171. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
df-in | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cin 3857 | . 2 class (𝐴 ∩ 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1537 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2111 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 5, 2 | wcel 2111 | . . . 4 wff 𝑥 ∈ 𝐵 |
8 | 6, 7 | wa 399 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) |
9 | 8, 4 | cab 2735 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
10 | 3, 9 | wceq 1538 | 1 wff (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: dfin5 3866 elin 3874 dfss2OLD 3879 ss2abdv 3968 disj 4344 disjOLD 4345 iinxprg 4976 disjex 30453 disjexc 30454 eulerpartlemt 31857 iocinico 40557 csbingVD 41985 |
Copyright terms: Public domain | W3C validator |