MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-in Structured version   Visualization version   GIF version

Definition df-in 3924
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30361). Contrast this operation with union (𝐴𝐵) (df-un 3922) and difference (𝐴𝐵) (df-dif 3920). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4237 and dfin4 4244. For intersection defined in terms of union, see dfin3 4243. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3916 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1539 . . . . 5 class 𝑥
65, 1wcel 2109 . . . 4 wff 𝑥𝐴
75, 2wcel 2109 . . . 4 wff 𝑥𝐵
86, 7wa 395 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2708 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1540 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  dfin5  3925  elin  3933  dfss2  3935  disj  4416  iinxprg  5056  disjex  32528  disjexc  32529  eulerpartlemt  34369  in-ax8  36219  iocinico  43208  csbingVD  44880
  Copyright terms: Public domain W3C validator