MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-in Structured version   Visualization version   GIF version

Definition df-in 3956
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 29678). Contrast this operation with union (𝐴𝐵) (df-un 3954) and difference (𝐴𝐵) (df-dif 3952). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4261 and dfin4 4268. For intersection defined in terms of union, see dfin3 4267. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3948 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1541 . . . . 5 class 𝑥
65, 1wcel 2107 . . . 4 wff 𝑥𝐴
75, 2wcel 2107 . . . 4 wff 𝑥𝐵
86, 7wa 397 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2710 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1542 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  dfin5  3957  elin  3965  dfss2OLD  3970  ss2abdv  4061  disj  4448  disjOLD  4449  iinxprg  5093  disjex  31823  disjexc  31824  eulerpartlemt  33370  iocinico  41961  csbingVD  43645
  Copyright terms: Public domain W3C validator