![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-in | Structured version Visualization version GIF version |
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 29678). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3954) and difference (𝐴 ∖ 𝐵) (df-dif 3952). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4261 and dfin4 4268. For intersection defined in terms of union, see dfin3 4267. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
df-in | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cin 3948 | . 2 class (𝐴 ∩ 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1541 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2107 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 5, 2 | wcel 2107 | . . . 4 wff 𝑥 ∈ 𝐵 |
8 | 6, 7 | wa 397 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) |
9 | 8, 4 | cab 2710 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
10 | 3, 9 | wceq 1542 | 1 wff (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: dfin5 3957 elin 3965 dfss2OLD 3970 ss2abdv 4061 disj 4448 disjOLD 4449 iinxprg 5093 disjex 31823 disjexc 31824 eulerpartlemt 33370 iocinico 41961 csbingVD 43645 |
Copyright terms: Public domain | W3C validator |