![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-in | Structured version Visualization version GIF version |
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30453). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3967) and difference (𝐴 ∖ 𝐵) (df-dif 3965). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4276 and dfin4 4283. For intersection defined in terms of union, see dfin3 4282. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
df-in | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cin 3961 | . 2 class (𝐴 ∩ 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1535 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2105 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 5, 2 | wcel 2105 | . . . 4 wff 𝑥 ∈ 𝐵 |
8 | 6, 7 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) |
9 | 8, 4 | cab 2711 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
10 | 3, 9 | wceq 1536 | 1 wff (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: dfin5 3970 elin 3978 dfss2 3980 disj 4455 iinxprg 5093 disjex 32611 disjexc 32612 eulerpartlemt 34352 in-ax8 36206 iocinico 43200 csbingVD 44881 |
Copyright terms: Public domain | W3C validator |