MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-in Structured version   Visualization version   GIF version

Definition df-in 3933
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30352). Contrast this operation with union (𝐴𝐵) (df-un 3931) and difference (𝐴𝐵) (df-dif 3929). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4246 and dfin4 4253. For intersection defined in terms of union, see dfin3 4252. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3925 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1539 . . . . 5 class 𝑥
65, 1wcel 2108 . . . 4 wff 𝑥𝐴
75, 2wcel 2108 . . . 4 wff 𝑥𝐵
86, 7wa 395 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2713 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1540 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  dfin5  3934  elin  3942  dfss2  3944  disj  4425  iinxprg  5065  disjex  32519  disjexc  32520  eulerpartlemt  34349  in-ax8  36188  iocinico  43183  csbingVD  44856
  Copyright terms: Public domain W3C validator