![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-in | Structured version Visualization version GIF version |
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30291). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3950) and difference (𝐴 ∖ 𝐵) (df-dif 3948). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4260 and dfin4 4267. For intersection defined in terms of union, see dfin3 4266. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
df-in | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cin 3944 | . 2 class (𝐴 ∩ 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1532 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2098 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 5, 2 | wcel 2098 | . . . 4 wff 𝑥 ∈ 𝐵 |
8 | 6, 7 | wa 394 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) |
9 | 8, 4 | cab 2702 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
10 | 3, 9 | wceq 1533 | 1 wff (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: dfin5 3953 elin 3961 dfss2 3963 disj 4448 disjOLD 4449 iinxprg 5092 disjex 32439 disjexc 32440 eulerpartlemt 34061 iocinico 42705 csbingVD 44388 |
Copyright terms: Public domain | W3C validator |