MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-in Structured version   Visualization version   GIF version

Definition df-in 3938
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30373). Contrast this operation with union (𝐴𝐵) (df-un 3936) and difference (𝐴𝐵) (df-dif 3934). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4251 and dfin4 4258. For intersection defined in terms of union, see dfin3 4257. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3930 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1538 . . . . 5 class 𝑥
65, 1wcel 2107 . . . 4 wff 𝑥𝐴
75, 2wcel 2107 . . . 4 wff 𝑥𝐵
86, 7wa 395 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2712 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1539 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  dfin5  3939  elin  3947  dfss2  3949  disj  4430  iinxprg  5069  disjex  32541  disjexc  32542  eulerpartlemt  34348  in-ax8  36200  iocinico  43202  csbingVD  44876
  Copyright terms: Public domain W3C validator