MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-in Structured version   Visualization version   GIF version

Definition df-in 3895
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 28798). Contrast this operation with union (𝐴𝐵) (df-un 3893) and difference (𝐴𝐵) (df-dif 3891). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4195 and dfin4 4202. For intersection defined in terms of union, see dfin3 4201. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3887 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1538 . . . . 5 class 𝑥
65, 1wcel 2107 . . . 4 wff 𝑥𝐴
75, 2wcel 2107 . . . 4 wff 𝑥𝐵
86, 7wa 396 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2716 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1539 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  dfin5  3896  elin  3904  dfss2OLD  3909  ss2abdv  3998  disj  4382  disjOLD  4383  iinxprg  5019  disjex  30940  disjexc  30941  eulerpartlemt  32347  iocinico  41050  csbingVD  42511
  Copyright terms: Public domain W3C validator