| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-in | Structured version Visualization version GIF version | ||
| Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 30361). Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3922) and difference (𝐴 ∖ 𝐵) (df-dif 3920). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4237 and dfin4 4244. For intersection defined in terms of union, see dfin3 4243. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-in | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cin 3916 | . 2 class (𝐴 ∩ 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 5, 2 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐵 |
| 8 | 6, 7 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) |
| 9 | 8, 4 | cab 2708 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| 10 | 3, 9 | wceq 1540 | 1 wff (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfin5 3925 elin 3933 dfss2 3935 disj 4416 iinxprg 5056 disjex 32528 disjexc 32529 eulerpartlemt 34369 in-ax8 36219 iocinico 43208 csbingVD 44880 |
| Copyright terms: Public domain | W3C validator |