| Step | Hyp | Ref
| Expression |
| 1 | | nfra1 3266 |
. . . . . . . 8
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 |
| 2 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑡 ∈ 𝑧 |
| 3 | | eleq2 2823 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝑡 ∈ 𝑧 ↔ 𝑡 ∈ 𝐵)) |
| 4 | | vex 3463 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
| 5 | 4 | a1i 11 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 𝑡 ∈ 𝐵 → 𝑧 ∈ V) |
| 6 | | rspa 3231 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 𝑡 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑡 ∈ 𝐵) |
| 7 | 1, 2, 3, 5, 6 | elabreximd 32491 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 𝑡 ∈ 𝐵 ∧ 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) → 𝑡 ∈ 𝑧) |
| 8 | 7 | ex 412 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝑡 ∈ 𝐵 → (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) |
| 9 | 8 | alrimiv 1927 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝑡 ∈ 𝐵 → ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) |
| 10 | 9 | adantl 481 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐵) → ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) |
| 11 | | nfra1 3266 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 |
| 12 | 2 | nfci 2886 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑧 |
| 13 | | nfre1 3267 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 = 𝐵 |
| 14 | 13 | nfab 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑥{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| 15 | 12, 14 | nfel 2913 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| 16 | 15, 2 | nfim 1896 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧) |
| 17 | 16 | nfal 2323 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧) |
| 18 | 11, 17 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑥(∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) |
| 19 | | rspa 3231 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 20 | 19 | elexd 3483 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ V) |
| 21 | 20 | adantlr 715 |
. . . . . . 7
⊢
(((∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ V) |
| 22 | | simplr 768 |
. . . . . . 7
⊢
(((∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) ∧ 𝑥 ∈ 𝐴) → ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) |
| 23 | | rspe 3232 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| 24 | | tbtru 1548 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈
𝐴 𝑦 = 𝐵 ↔ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤)) |
| 25 | 23, 24 | sylib 218 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤)) |
| 26 | 25 | ex 412 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤))) |
| 27 | 26 | alrimiv 1927 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤))) |
| 28 | 27 | adantl 481 |
. . . . . . . 8
⊢
(((∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) ∧ 𝑥 ∈ 𝐴) → ∀𝑦(𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤))) |
| 29 | | elabgt 3651 |
. . . . . . . . 9
⊢ ((𝐵 ∈ V ∧ ∀𝑦(𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤))) → (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ⊤)) |
| 30 | | tbtru 1548 |
. . . . . . . . 9
⊢ (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ⊤)) |
| 31 | 29, 30 | sylibr 234 |
. . . . . . . 8
⊢ ((𝐵 ∈ V ∧ ∀𝑦(𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ⊤))) → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| 32 | 21, 28, 31 | syl2anc 584 |
. . . . . . 7
⊢
(((∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| 33 | | eleq1 2822 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐵 → (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵})) |
| 34 | 33, 3 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐵 → ((𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧) ↔ (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝐵))) |
| 35 | 34 | spcgv 3575 |
. . . . . . . . 9
⊢ (𝐵 ∈ V → (∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧) → (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝐵))) |
| 36 | 35 | imp 406 |
. . . . . . . 8
⊢ ((𝐵 ∈ V ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) → (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝐵)) |
| 37 | 36 | imp 406 |
. . . . . . 7
⊢ (((𝐵 ∈ V ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) ∧ 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) → 𝑡 ∈ 𝐵) |
| 38 | 21, 22, 32, 37 | syl21anc 837 |
. . . . . 6
⊢
(((∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) ∧ 𝑥 ∈ 𝐴) → 𝑡 ∈ 𝐵) |
| 39 | 38 | ex 412 |
. . . . 5
⊢
((∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) → (𝑥 ∈ 𝐴 → 𝑡 ∈ 𝐵)) |
| 40 | 18, 39 | ralrimi 3240 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)) → ∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐵) |
| 41 | 10, 40 | impbida 800 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧))) |
| 42 | 41 | abbidv 2801 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → {𝑡 ∣ ∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐵} = {𝑡 ∣ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)}) |
| 43 | | df-iin 4970 |
. . 3
⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑡 ∣ ∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐵} |
| 44 | 43 | a1i 11 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → ∩
𝑥 ∈ 𝐴 𝐵 = {𝑡 ∣ ∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐵}) |
| 45 | | df-int 4923 |
. . 3
⊢ ∩ {𝑦
∣ ∃𝑥 ∈
𝐴 𝑦 = 𝐵} = {𝑡 ∣ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)} |
| 46 | 45 | a1i 11 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑡 ∣ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑡 ∈ 𝑧)}) |
| 47 | 42, 44, 46 | 3eqtr4d 2780 |
1
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → ∩
𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |