Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinabrex Structured version   Visualization version   GIF version

Theorem iinabrex 31487
Description: Rewriting an indexed intersection into an intersection of its image set. (Contributed by Thierry Arnoux, 15-Jun-2024.)
Assertion
Ref Expression
iinabrex (∀𝑥𝐴 𝐵𝑉 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem iinabrex
Dummy variables 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 3267 . . . . . . . 8 𝑥𝑥𝐴 𝑡𝐵
2 nfv 1917 . . . . . . . 8 𝑥 𝑡𝑧
3 eleq2 2826 . . . . . . . 8 (𝑧 = 𝐵 → (𝑡𝑧𝑡𝐵))
4 vex 3449 . . . . . . . . 9 𝑧 ∈ V
54a1i 11 . . . . . . . 8 (∀𝑥𝐴 𝑡𝐵𝑧 ∈ V)
6 rspa 3231 . . . . . . . 8 ((∀𝑥𝐴 𝑡𝐵𝑥𝐴) → 𝑡𝐵)
71, 2, 3, 5, 6elabreximd 31436 . . . . . . 7 ((∀𝑥𝐴 𝑡𝐵𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) → 𝑡𝑧)
87ex 413 . . . . . 6 (∀𝑥𝐴 𝑡𝐵 → (𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧))
98alrimiv 1930 . . . . 5 (∀𝑥𝐴 𝑡𝐵 → ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧))
109adantl 482 . . . 4 ((∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴 𝑡𝐵) → ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧))
11 nfra1 3267 . . . . . 6 𝑥𝑥𝐴 𝐵𝑉
122nfci 2890 . . . . . . . . 9 𝑥𝑧
13 nfre1 3268 . . . . . . . . . 10 𝑥𝑥𝐴 𝑦 = 𝐵
1413nfab 2913 . . . . . . . . 9 𝑥{𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
1512, 14nfel 2921 . . . . . . . 8 𝑥 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
1615, 2nfim 1899 . . . . . . 7 𝑥(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)
1716nfal 2316 . . . . . 6 𝑥𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)
1811, 17nfan 1902 . . . . 5 𝑥(∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧))
19 rspa 3231 . . . . . . . . 9 ((∀𝑥𝐴 𝐵𝑉𝑥𝐴) → 𝐵𝑉)
2019elexd 3465 . . . . . . . 8 ((∀𝑥𝐴 𝐵𝑉𝑥𝐴) → 𝐵 ∈ V)
2120adantlr 713 . . . . . . 7 (((∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)) ∧ 𝑥𝐴) → 𝐵 ∈ V)
22 simplr 767 . . . . . . 7 (((∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)) ∧ 𝑥𝐴) → ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧))
23 rspe 3232 . . . . . . . . . . . 12 ((𝑥𝐴𝑦 = 𝐵) → ∃𝑥𝐴 𝑦 = 𝐵)
24 tbtru 1549 . . . . . . . . . . . 12 (∃𝑥𝐴 𝑦 = 𝐵 ↔ (∃𝑥𝐴 𝑦 = 𝐵 ↔ ⊤))
2523, 24sylib 217 . . . . . . . . . . 11 ((𝑥𝐴𝑦 = 𝐵) → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ⊤))
2625ex 413 . . . . . . . . . 10 (𝑥𝐴 → (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ⊤)))
2726alrimiv 1930 . . . . . . . . 9 (𝑥𝐴 → ∀𝑦(𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ⊤)))
2827adantl 482 . . . . . . . 8 (((∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)) ∧ 𝑥𝐴) → ∀𝑦(𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ⊤)))
29 elabgt 3624 . . . . . . . . 9 ((𝐵 ∈ V ∧ ∀𝑦(𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ⊤))) → (𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ⊤))
30 tbtru 1549 . . . . . . . . 9 (𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ (𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ⊤))
3129, 30sylibr 233 . . . . . . . 8 ((𝐵 ∈ V ∧ ∀𝑦(𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ⊤))) → 𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
3221, 28, 31syl2anc 584 . . . . . . 7 (((∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)) ∧ 𝑥𝐴) → 𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
33 eleq1 2825 . . . . . . . . . . 11 (𝑧 = 𝐵 → (𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ 𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
3433, 3imbi12d 344 . . . . . . . . . 10 (𝑧 = 𝐵 → ((𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧) ↔ (𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝐵)))
3534spcgv 3555 . . . . . . . . 9 (𝐵 ∈ V → (∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧) → (𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝐵)))
3635imp 407 . . . . . . . 8 ((𝐵 ∈ V ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)) → (𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝐵))
3736imp 407 . . . . . . 7 (((𝐵 ∈ V ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)) ∧ 𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) → 𝑡𝐵)
3821, 22, 32, 37syl21anc 836 . . . . . 6 (((∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)) ∧ 𝑥𝐴) → 𝑡𝐵)
3938ex 413 . . . . 5 ((∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)) → (𝑥𝐴𝑡𝐵))
4018, 39ralrimi 3240 . . . 4 ((∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)) → ∀𝑥𝐴 𝑡𝐵)
4110, 40impbida 799 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∀𝑥𝐴 𝑡𝐵 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)))
4241abbidv 2805 . 2 (∀𝑥𝐴 𝐵𝑉 → {𝑡 ∣ ∀𝑥𝐴 𝑡𝐵} = {𝑡 ∣ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)})
43 df-iin 4957 . . 3 𝑥𝐴 𝐵 = {𝑡 ∣ ∀𝑥𝐴 𝑡𝐵}
4443a1i 11 . 2 (∀𝑥𝐴 𝐵𝑉 𝑥𝐴 𝐵 = {𝑡 ∣ ∀𝑥𝐴 𝑡𝐵})
45 df-int 4908 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑡 ∣ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)}
4645a1i 11 . 2 (∀𝑥𝐴 𝐵𝑉 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑡 ∣ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑡𝑧)})
4742, 44, 463eqtr4d 2786 1 (∀𝑥𝐴 𝐵𝑉 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wtru 1542  wcel 2106  {cab 2713  wral 3064  wrex 3073  Vcvv 3445   cint 4907   ciin 4955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ral 3065  df-rex 3074  df-v 3447  df-int 4908  df-iin 4957
This theorem is referenced by:  intimafv  31624
  Copyright terms: Public domain W3C validator