HomeHome Metamath Proof Explorer
Theorem List (p. 50 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 4901-5000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremintssuni2 4901 Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.)
((𝐴𝐵𝐴 ≠ ∅) → 𝐴 𝐵)
 
Theoremintminss 4902* Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵𝜓) → {𝑥𝐵𝜑} ⊆ 𝐴)
 
Theoremintmin2 4903* Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
𝐴 ∈ V        {𝑥𝐴𝑥} = 𝐴
 
Theoremintmin3 4904* Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   𝜓       (𝐴𝑉 {𝑥𝜑} ⊆ 𝐴)
 
Theoremintmin4 4905* Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.)
(𝐴 {𝑥𝜑} → {𝑥 ∣ (𝐴𝑥𝜑)} = {𝑥𝜑})
 
Theoremintab 4906* The intersection of a special case of a class abstraction. 𝑦 may be free in 𝜑 and 𝐴, which can be thought of a 𝜑(𝑦) and 𝐴(𝑦). Typically, abrexex2 7785 or abexssex 7786 can be used to satisfy the second hypothesis. (Contributed by NM, 28-Jul-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
𝐴 ∈ V    &   {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)} ∈ V        {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} = {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)}
 
Theoremint0el 4907 The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.)
(∅ ∈ 𝐴 𝐴 = ∅)
 
Theoremintun 4908 The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.)
(𝐴𝐵) = ( 𝐴 𝐵)
 
Theoremintprg 4909 The intersection of a pair is the intersection of its members. Closed form of intpr 4910. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.) (Proof shortened by BJ, 1-Sep-2024.)
((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
 
Theoremintpr 4910 The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) Prove from intprg 4909. (Revised by BJ, 1-Sep-2024.)
𝐴 ∈ V    &   𝐵 ∈ V        {𝐴, 𝐵} = (𝐴𝐵)
 
TheoremintprOLD 4911 Obsolete version of intpr 4910 as of 1-Sep-2024. (Contributed by NM, 14-Oct-1999.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V    &   𝐵 ∈ V        {𝐴, 𝐵} = (𝐴𝐵)
 
TheoremintprgOLD 4912 Obsolete version of intprg 4909 as of 1-Sep-2024. (Contributed by FL, 27-Apr-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
 
Theoremintsng 4913 Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
(𝐴𝑉 {𝐴} = 𝐴)
 
Theoremintsn 4914 The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.)
𝐴 ∈ V        {𝐴} = 𝐴
 
Theoremuniintsn 4915* Two ways to express "𝐴 is a singleton". See also en1 8765, en1b 8767, card1 9657, and eusn 4663. (Contributed by NM, 2-Aug-2010.)
( 𝐴 = 𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
 
Theoremuniintab 4916 The union and the intersection of a class abstraction are equal exactly when there is a unique satisfying value of 𝜑(𝑥). (Contributed by Mario Carneiro, 24-Dec-2016.)
(∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})
 
Theoremintunsn 4917 Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
𝐵 ∈ V        (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)
 
Theoremrint0 4918 Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
(𝑋 = ∅ → (𝐴 𝑋) = 𝐴)
 
Theoremelrint 4919* Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
(𝑋 ∈ (𝐴 𝐵) ↔ (𝑋𝐴 ∧ ∀𝑦𝐵 𝑋𝑦))
 
Theoremelrint2 4920* Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
(𝑋𝐴 → (𝑋 ∈ (𝐴 𝐵) ↔ ∀𝑦𝐵 𝑋𝑦))
 
2.1.21  Indexed union and intersection
 
Syntaxciun 4921 Extend class notation to include indexed union. Note: Historically (prior to 21-Oct-2005), set.mm used the notation 𝑥𝐴𝐵, with the same union symbol as cuni 4836. While that syntax was unambiguous, it did not allow for LALR parsing of the syntax constructions in set.mm. The new syntax uses a distinguished symbol instead of and does allow LALR parsing. Thanks to Peter Backes for suggesting this change.
class 𝑥𝐴 𝐵
 
Syntaxciin 4922 Extend class notation to include indexed intersection. Note: Historically (prior to 21-Oct-2005), set.mm used the notation 𝑥𝐴𝐵, with the same intersection symbol as cint 4876. Although that syntax was unambiguous, it did not allow for LALR parsing of the syntax constructions in set.mm. The new syntax uses a distinguished symbol instead of and does allow LALR parsing. Thanks to Peter Backes for suggesting this change.
class 𝑥𝐴 𝐵
 
Definitiondf-iun 4923* Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥𝐴 is written as a subscript or underneath a union symbol . We use a special union symbol to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same distinct variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a distinct variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 4959. Theorem uniiun 4984 provides a definition of ordinary union in terms of indexed union. Theorems fniunfv 7102 and funiunfv 7103 are useful when 𝐵 is a function. (Contributed by NM, 27-Jun-1998.)
𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
 
Definitiondf-iin 4924* Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 4923. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 4960. Theorem intiin 4985 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
 
Theoremeliun 4925* Membership in indexed union. (Contributed by NM, 3-Sep-2003.)
(𝐴 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝐴𝐶)
 
Theoremeliin 4926* Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.)
(𝐴𝑉 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
 
Theoremeliuni 4927* Membership in an indexed union, one way. (Contributed by JJ, 27-Jul-2021.)
(𝑥 = 𝐴𝐵 = 𝐶)       ((𝐴𝐷𝐸𝐶) → 𝐸 𝑥𝐷 𝐵)
 
Theoremiuncom 4928* Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.)
𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 𝑥𝐴 𝐶
 
Theoremiuncom4 4929 Commutation of union with indexed union. (Contributed by Mario Carneiro, 18-Jan-2014.)
𝑥𝐴 𝐵 = 𝑥𝐴 𝐵
 
Theoremiunconst 4930* Indexed union of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝐵)
 
Theoremiinconst 4931* Indexed intersection of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Mario Carneiro, 6-Feb-2015.)
(𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝐵)
 
Theoremiuneqconst 4932* Indexed union of identical classes. (Contributed by AV, 5-Mar-2024.)
(𝑥 = 𝑋𝐵 = 𝐶)       ((𝑋𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → 𝑥𝐴 𝐵 = 𝐶)
 
Theoremiuniin 4933* Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝑥𝐴 𝑦𝐵 𝐶 𝑦𝐵 𝑥𝐴 𝐶
 
Theoremiinssiun 4934* An indexed intersection is a subset of the corresponding indexed union. (Contributed by Thierry Arnoux, 31-Dec-2021.)
(𝐴 ≠ ∅ → 𝑥𝐴 𝐵 𝑥𝐴 𝐵)
 
Theoremiunss1 4935* Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
 
Theoremiinss1 4936* Subclass theorem for indexed intersection. (Contributed by NM, 24-Jan-2012.)
(𝐴𝐵 𝑥𝐵 𝐶 𝑥𝐴 𝐶)
 
Theoremiuneq1 4937* Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.)
(𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
 
Theoremiineq1 4938* Equality theorem for indexed intersection. (Contributed by NM, 27-Jun-1998.)
(𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
 
Theoremss2iun 4939 Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
 
Theoremiuneq2 4940 Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.)
(∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremiineq2 4941 Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremiuneq2i 4942 Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.)
(𝑥𝐴𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑥𝐴 𝐶
 
Theoremiineq2i 4943 Equality inference for indexed intersection. (Contributed by NM, 22-Oct-2003.)
(𝑥𝐴𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑥𝐴 𝐶
 
Theoremiineq2d 4944 Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremiuneq2dv 4945* Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.)
((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremiineq2dv 4946* Equality deduction for indexed intersection. (Contributed by NM, 3-Aug-2004.)
((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremiuneq12df 4947 Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016.)
𝑥𝜑    &   𝑥𝐴    &   𝑥𝐵    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
 
Theoremiuneq1d 4948* Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.)
(𝜑𝐴 = 𝐵)       (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
 
Theoremiuneq12d 4949* Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
 
Theoremiuneq2d 4950* Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.)
(𝜑𝐵 = 𝐶)       (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremnfiun 4951* Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2372. See nfiung 4953 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
𝑦𝐴    &   𝑦𝐵       𝑦 𝑥𝐴 𝐵
 
Theoremnfiin 4952* Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2372. See nfiing 4954 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
𝑦𝐴    &   𝑦𝐵       𝑦 𝑥𝐴 𝐵
 
Theoremnfiung 4953 Bound-variable hypothesis builder for indexed union. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfiun 4951 for a version with more disjoint variable conditions, but not requiring ax-13 2372. (Contributed by Mario Carneiro, 25-Jan-2014.) (New usage is discouraged.)
𝑦𝐴    &   𝑦𝐵       𝑦 𝑥𝐴 𝐵
 
Theoremnfiing 4954 Bound-variable hypothesis builder for indexed intersection. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfiin 4952 for a version with more disjoint variable conditions, but not requiring ax-13 2372. (Contributed by Mario Carneiro, 25-Jan-2014.) (New usage is discouraged.)
𝑦𝐴    &   𝑦𝐵       𝑦 𝑥𝐴 𝐵
 
Theoremnfiu1 4955 Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.)
𝑥 𝑥𝐴 𝐵
 
Theoremnfii1 4956 Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.)
𝑥 𝑥𝐴 𝐵
 
Theoremdfiun2g 4957* Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by Rohan Ridenour, 11-Aug-2023.)
(∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
 
Theoremdfiin2g 4958* Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Jeff Hankins, 27-Aug-2009.)
(∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
 
Theoremdfiun2 4959* Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.)
𝐵 ∈ V        𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
 
Theoremdfiin2 4960* Alternate definition of indexed intersection when 𝐵 is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝐵 ∈ V        𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
 
Theoremdfiunv2 4961* Define double indexed union. (Contributed by FL, 6-Nov-2013.)
𝑥𝐴 𝑦𝐵 𝐶 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧𝐶}
 
Theoremcbviun 4962* Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) Add disjoint variable condition to avoid ax-13 2372. See cbviung 4964 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremcbviin 4963* Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2372. See cbviing 4965 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremcbviung 4964* Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. Usage of this theorem is discouraged because it depends on ax-13 2372. See cbviun 4962 for a version with more disjoint variable conditions, but not requiring ax-13 2372. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremcbviing 4965* Change bound variables in an indexed intersection. Usage of this theorem is discouraged because it depends on ax-13 2372. See cbviin 4963 for a version with more disjoint variable conditions, but not requiring ax-13 2372. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremcbviunv 4966* Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2372. See cbviunvg 4968 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
(𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremcbviinv 4967* Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) Add disjoint variable condition to avoid ax-13 2372. See cbviinvg 4969 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
(𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremcbviunvg 4968* Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. Usage of this theorem is discouraged because it depends on ax-13 2372. Usage of the weaker cbviunv 4966 is preferred. (Contributed by NM, 15-Sep-2003.) (New usage is discouraged.)
(𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremcbviinvg 4969* Change bound variables in an indexed intersection. Usage of this theorem is discouraged because it depends on ax-13 2372. Usage of the weaker cbviinv 4967 is preferred. (Contributed by Jeff Hankins, 26-Aug-2009.) (New usage is discouraged.)
(𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremiunssf 4970 Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝑥𝐶       ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
 
Theoremiunss 4971* Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
 
Theoremssiun 4972* Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(∃𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵)
 
Theoremssiun2 4973 Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝑥𝐴𝐵 𝑥𝐴 𝐵)
 
Theoremssiun2s 4974* Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.)
(𝑥 = 𝐶𝐵 = 𝐷)       (𝐶𝐴𝐷 𝑥𝐴 𝐵)
 
Theoremiunss2 4975* A subclass condition on the members of two indexed classes 𝐶(𝑥) and 𝐷(𝑦) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 4871. (Contributed by NM, 9-Dec-2004.)
(∀𝑥𝐴𝑦𝐵 𝐶𝐷 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
 
Theoremiunssd 4976* Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑 𝑥𝐴 𝐵𝐶)
 
Theoremiunab 4977* The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∃𝑥𝐴 𝜑}
 
Theoremiunrab 4978* The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑}
 
Theoremiunxdif2 4979* Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.)
(𝑥 = 𝑦𝐶 = 𝐷)       (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝐶𝐷 𝑦 ∈ (𝐴𝐵)𝐷 = 𝑥𝐴 𝐶)
 
Theoremssiinf 4980 Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.)
𝑥𝐶       (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
 
Theoremssiin 4981* Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.)
(𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
 
Theoremiinss 4982* Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
 
Theoremiinss2 4983 An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.)
(𝑥𝐴 𝑥𝐴 𝐵𝐵)
 
Theoremuniiun 4984* Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.)
𝐴 = 𝑥𝐴 𝑥
 
Theoremintiin 4985* Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.)
𝐴 = 𝑥𝐴 𝑥
 
Theoremiunid 4986* An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.)
𝑥𝐴 {𝑥} = 𝐴
 
Theoremiun0 4987 An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝑥𝐴 ∅ = ∅
 
Theorem0iun 4988 An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝑥 ∈ ∅ 𝐴 = ∅
 
Theorem0iin 4989 An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.)
𝑥 ∈ ∅ 𝐴 = V
 
Theoremviin 4990* Indexed intersection with a universal index class. When 𝐴 doesn't depend on 𝑥, this evaluates to 𝐴 by 19.3 2198 and abid2 2881. When 𝐴 = 𝑥, this evaluates to by intiin 4985 and intv 5281. (Contributed by NM, 11-Sep-2008.)
𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦𝐴}
 
Theoremiunsn 4991* Indexed union of a singleton. Compare dfiun2 4959 and rnmpt 5853. (Contributed by Steven Nguyen, 7-Jun-2023.)
𝑥𝐴 {𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
 
Theoremiunn0 4992* There is a nonempty class in an indexed collection 𝐵(𝑥) iff the indexed union of them is nonempty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(∃𝑥𝐴 𝐵 ≠ ∅ ↔ 𝑥𝐴 𝐵 ≠ ∅)
 
Theoremiinab 4993* Indexed intersection of a class abstraction. (Contributed by NM, 6-Dec-2011.)
𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑}
 
Theoremiinrab 4994* Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011.)
(𝐴 ≠ ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
 
Theoremiinrab2 4995* Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011.)
( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑}
 
Theoremiunin2 4996* Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 4984 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.)
𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
 
Theoremiunin1 4997* Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 4984 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.)
𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵)
 
Theoremiinun2 4998* Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4985 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
 
Theoremiundif2 4999* Indexed union of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use intiin 4985 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
 
Theoremiindif1 5000* Indexed intersection of class difference with the subtrahend held constant. (Contributed by Thierry Arnoux, 21-Aug-2023.)
(𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵𝐶))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >