MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfint2 Structured version   Visualization version   GIF version

Theorem dfint2 4947
Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
dfint2 𝐴 = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfint2
StepHypRef Expression
1 df-int 4946 . 2 𝐴 = {𝑥 ∣ ∀𝑦(𝑦𝐴𝑥𝑦)}
2 df-ral 3061 . . 3 (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦(𝑦𝐴𝑥𝑦))
32abbii 2808 . 2 {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦} = {𝑥 ∣ ∀𝑦(𝑦𝐴𝑥𝑦)}
41, 3eqtr4i 2767 1 𝐴 = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537   = wceq 1539  wcel 2107  {cab 2713  wral 3060   cint 4945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-ral 3061  df-int 4946
This theorem is referenced by:  inteq  4948  elintg  4953  nfint  4955  intss  4968  intiin  5058  dfint3  35954
  Copyright terms: Public domain W3C validator