MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfint2 Structured version   Visualization version   GIF version

Theorem dfint2 4894
Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
dfint2 𝐴 = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfint2
StepHypRef Expression
1 df-int 4893 . 2 𝐴 = {𝑥 ∣ ∀𝑦(𝑦𝐴𝑥𝑦)}
2 df-ral 3048 . . 3 (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦(𝑦𝐴𝑥𝑦))
32abbii 2798 . 2 {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦} = {𝑥 ∣ ∀𝑦(𝑦𝐴𝑥𝑦)}
41, 3eqtr4i 2757 1 𝐴 = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  wcel 2111  {cab 2709  wral 3047   cint 4892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-ral 3048  df-int 4893
This theorem is referenced by:  inteq  4895  elintg  4900  nfint  4902  intss  4914  intiin  5003  dfint3  35986
  Copyright terms: Public domain W3C validator