Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfint2 | Structured version Visualization version GIF version |
Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
dfint2 | ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-int 4880 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} | |
2 | df-ral 3069 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)) | |
3 | 2 | abbii 2808 | . 2 ⊢ {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
4 | 1, 3 | eqtr4i 2769 | 1 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-ral 3069 df-int 4880 |
This theorem is referenced by: inteq 4882 elintg 4887 nfint 4889 intss 4900 intiin 4989 dfint3 34254 |
Copyright terms: Public domain | W3C validator |