| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfintd | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020.) |
| Ref | Expression |
|---|---|
| nfintd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfintd | ⊢ (𝜑 → Ⅎ𝑥∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-int 4928 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)} | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 4 | nfintd.1 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | 4 | nfcrd 2893 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ 𝐴) |
| 6 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝑧) |
| 8 | 5, 7 | nfimd 1894 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)) |
| 9 | 3, 8 | nfald 2329 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑧(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)) |
| 10 | 2, 9 | nfabdw 2921 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ ∀𝑧(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)}) |
| 11 | 1, 10 | nfcxfrd 2898 | 1 ⊢ (𝜑 → Ⅎ𝑥∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 ∈ wcel 2109 {cab 2714 Ⅎwnfc 2884 ∩ cint 4927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-int 4928 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |