Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfintd | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020.) |
Ref | Expression |
---|---|
nfintd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfintd | ⊢ (𝜑 → Ⅎ𝑥∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-int 4877 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)} | |
2 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
4 | nfintd.1 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | 4 | nfcrd 2895 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ 𝐴) |
6 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝑧) |
8 | 5, 7 | nfimd 1898 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)) |
9 | 3, 8 | nfald 2326 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑧(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)) |
10 | 2, 9 | nfabdw 2929 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ ∀𝑧(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)}) |
11 | 1, 10 | nfcxfrd 2905 | 1 ⊢ (𝜑 → Ⅎ𝑥∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1787 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-int 4877 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |