![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfintd | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020.) |
Ref | Expression |
---|---|
nfintd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfintd | ⊢ (𝜑 → Ⅎ𝑥∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-int 4950 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)} | |
2 | nfv 1910 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1910 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
4 | nfintd.1 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | 4 | nfcrd 2888 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ 𝐴) |
6 | nfv 1910 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝑧) |
8 | 5, 7 | nfimd 1890 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)) |
9 | 3, 8 | nfald 2317 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑧(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)) |
10 | 2, 9 | nfabdw 2923 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ ∀𝑧(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)}) |
11 | 1, 10 | nfcxfrd 2898 | 1 ⊢ (𝜑 → Ⅎ𝑥∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 Ⅎwnf 1778 ∈ wcel 2099 {cab 2705 Ⅎwnfc 2879 ∩ cint 4949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-int 4950 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |