Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfintd Structured version   Visualization version   GIF version

Theorem nfintd 48765
Description: Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020.)
Hypothesis
Ref Expression
nfintd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfintd (𝜑𝑥 𝐴)

Proof of Theorem nfintd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-int 4971 . 2 𝐴 = {𝑦 ∣ ∀𝑧(𝑧𝐴𝑦𝑧)}
2 nfv 1913 . . 3 𝑦𝜑
3 nfv 1913 . . . 4 𝑧𝜑
4 nfintd.1 . . . . . 6 (𝜑𝑥𝐴)
54nfcrd 2902 . . . . 5 (𝜑 → Ⅎ𝑥 𝑧𝐴)
6 nfv 1913 . . . . . 6 𝑥 𝑦𝑧
76a1i 11 . . . . 5 (𝜑 → Ⅎ𝑥 𝑦𝑧)
85, 7nfimd 1893 . . . 4 (𝜑 → Ⅎ𝑥(𝑧𝐴𝑦𝑧))
93, 8nfald 2332 . . 3 (𝜑 → Ⅎ𝑥𝑧(𝑧𝐴𝑦𝑧))
102, 9nfabdw 2932 . 2 (𝜑𝑥{𝑦 ∣ ∀𝑧(𝑧𝐴𝑦𝑧)})
111, 10nfcxfrd 2907 1 (𝜑𝑥 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wnf 1781  wcel 2108  {cab 2717  wnfc 2893   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-int 4971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator