![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfintd | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020.) |
Ref | Expression |
---|---|
nfintd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfintd | ⊢ (𝜑 → Ⅎ𝑥∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-int 4950 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)} | |
2 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
4 | nfintd.1 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | 4 | nfcrd 2892 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ 𝐴) |
6 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝑧) |
8 | 5, 7 | nfimd 1897 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)) |
9 | 3, 8 | nfald 2321 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑧(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)) |
10 | 2, 9 | nfabdw 2926 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ ∀𝑧(𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧)}) |
11 | 1, 10 | nfcxfrd 2902 | 1 ⊢ (𝜑 → Ⅎ𝑥∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1785 ∈ wcel 2106 {cab 2709 Ⅎwnfc 2883 ∩ cint 4949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-int 4950 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |